搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究

周金萍 李春梅 姜博 黄仁忠

引用本文:
Citation:

Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究

周金萍, 李春梅, 姜博, 黄仁忠

First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy

Zhou Jin-Ping, Li Chun-Mei, Jiang Bo, Huang Ren-Zhong
PDF
HTML
导出引用
  • 采用精确的Muffin-Tin轨道结合相干势近似方法, 系统计算研究了0 K下Co和Ni过量对Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金晶体结构及原子占位、马氏体相变、磁矩和弹性常数的影响规律及其物理机理. 研究结果表明: 绝大多数合金奥氏体相均具有XA稳定结构, 且过量Co和Ni原子均占据在不足原子位置, 仅当Ni取代Ga时其处于反常占位; 随x的增加, 仅有两组Ga不足合金的L10相对于XA的电子总能逐渐降低, 前者四方剪切弹性常数逐渐增加, 而后者其则逐渐减小, 在能量和力学上Co和Ni取代Ga均促进了马氏体相变的发生, 并有望提高马氏体相变温度; 各合金XA和L10相总磁矩(μtot)主要源于Co原子的贡献, Ni原子仅贡献较小部分, 且两相μtot在四组合金中随x变化关系相同, 在同一组分下, 它们相差不超过约0.32 μB; 电子结构计算分析表明, 相对于XA相而言, L10-Co2NiGa合金的稳定性主要源于Co和Ni原子在费米能级附近自旋向下的电子态密度分布, 即归结于Jahn-Teller效应. 上述结果有望为实验上Co2NiGa基三元合金结构与性能的优化设计提供理论参考.
    Using the first-principles exact muffin-tin orbital method combined with the coherent potential approximation, the crystal structure and site occupation, martensitic transformation, magnetic moment and elastic constant for each of Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys with Co and Ni excess at 0 K are systematically investigated. It is shown that most of the austenitic phases of the alloys have XA stable structure, and the excess Co and Ni atoms occupy the insufficient atomic positions, and it is inversely occupied only when Ni replaces Ga. With the increase of x, the total electron energy of L10 relative to XA of only two Ga-insufficient alloys gradually decreases, for the former, the tetragonal shear elastic constant gradually increases, but for the latter, it gradually decreases. It is indicated that the martensitic transformation is promoted by the substitution of both Co and Ni for Ga in the energy and mechanics, and the martensitic transformation temperature is expected to increase. The values of total magnetic moment (μtot) of the XA phase and L10 phase of each alloy are mainly contributed by Co atoms, but onlya relatively small portion by Ni atoms. And the values of μtot of two phases in the four alloys have the same relationship with x, and the difference between them with the same compositions is not more than about 0.32 μB . The analyses of electronic structure calculations show that the distributions of spin-down electronic density of states of Co and Ni atoms near the Fermi energy level have contributed significantly to the stability of L10 relative to the XA phase, which is attributed to the Jahn-Teller effect. The above results are expected to provide a theoretical reference for the optimal design of the structure and properties of Co2NiGa-based ternary alloys.
      通信作者: 李春梅, cmli@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174269, 11674233, 51301176)和辽宁省教育厅基金(批准号: LJKMZ20221472)资助的课题.
      Corresponding author: Li Chun-Mei, cmli@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174269, 11674233, 51301176) and the Education Department Foundation of Liaoning Province, China (Grant No. LJKMZ20221472).
    [1]

    Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219

    [2]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393Google Scholar

    [3]

    Ahmad A, Guchhait S, Ahmad H, Srivastava S K, Das A K 2019 International Conference on Advances in Basic Sciences Bahal, India, February 07–09, 2019 p090006

    [4]

    XU X, Nagasako M, Ito W, Umetsu R Y, Kanomata T, Kainuma R 2013 Acta Mater. 61 6712Google Scholar

    [5]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [6]

    Kierstead H A, Dunlap B D, Malik S K, Umarji A M, Shenoy G K 1985 Phys. Rev. B 32 135Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. Jpn. 36 620Google Scholar

    [8]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta Mater. 58 3655Google Scholar

    [9]

    Guezlane M, Baaziz H, Hassan F E H, Charifi C, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [10]

    Planes A, Mañosa L, Acet M 2009 J. Phys. :Condens. Matter 21 233201Google Scholar

    [11]

    Chabungbam S, Borgohain P, Ghosh S, Singh N, Sahariah M B 2016 J. Alloys Compd. 689 199Google Scholar

    [12]

    Shreder E I, Lukoyanov A V, Makhnev A A, Baglasov E D, Suresh K G 2019 Phys. Met. Metall. 120 729Google Scholar

    [13]

    Sokolovskiy V, Miroshkina O N, Sanosyan A, Baigutlin D, Buchelnikov V, Gruner M E 2022 J. Magn. Magn. Mater. 546 168728Google Scholar

    [14]

    Pereira M J, Santos T, Correia R, Amaral J S, Amaral V S, Fabbrici S, Albertini F 2021 J. Magn. Magn. Mater. 538 168283Google Scholar

    [15]

    Yan S M, Pu J, Chi B, Li J 2011 Chin. Sci. Bull. 56 796Google Scholar

    [16]

    Craciunescu C, Kishi Y, Lograsso T A, Wuttig M 2002 Scr. Mater. 47 285Google Scholar

    [17]

    Biswas C, Rawat R, Barman S R 2005 Appl. Phys. Lett. 86 202508Google Scholar

    [18]

    Li C M, Yang S J, Zhou J P 2022 Chin. Phys. B 31 056105Google Scholar

    [19]

    Siewert M, Gruner M E, Hucht A, Herper H C, Dannenberg A, Chakrabarti A, Singh N, Arróyave R, Entel P 2012 Adv. Eng. Mater. 14 530Google Scholar

    [20]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [21]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [22]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [23]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [24]

    Bain E C 1924 Trans. Am. Inst. Min. Metall. Eng. 70 25

    [25]

    Cao P Y, Tian F Y, Li W, Vitos L, Wang Y D 2021 Acta Mater. 210 116816Google Scholar

    [26]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [27]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [28]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Thesis (Shenyang: Shangyang Normal University) (in Chinese)

    [29]

    杨顺杰, 李春梅, 周金萍 2022 物理学报 71 106201Google Scholar

    Yang S J, Li C M, Zhou J P 2022 Acta Phys. Sin. 71 106201Google Scholar

    [30]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Materials Science Forum (Switzerland: Trans Tech Publications) p1

    [32]

    Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A, Entel P 2010 Phys. Rev. B 82 064420Google Scholar

    [33]

    Eleno L T F, Chivukula A, Arróyave R, Schön C G 2010 TOFA 2010-Discusion Meeting on Thermodynamics of Alloys Porto, Portugual, September 14, 2010

    [34]

    Olivos E, Miranda A L, Singh N, Arróyave R, Romero A H 2012 Ann. Phys. 524 212Google Scholar

    [35]

    Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y, Garay A 2010 Acta Mater. 58 5220Google Scholar

    [36]

    Li Q S, Liang Z Y, Sun K C, Luo H Z 2019 Comput. Mater. Sci. 168 11Google Scholar

    [37]

    Matsushita Y I, Madjarova G, Dewhurst J K, Shallcross S, Felser C, Sharma S, Gross E K U 2017 J. Phys. D:Appl. Phys. 50 095002Google Scholar

    [38]

    Talapatra A, Arróyave R, Entel P, Valencia-Jaime I, Romero A H 2015 Phys. Rev. B 92 054107Google Scholar

    [39]

    Bai J, Liu D, Huang R K, Zhang Z Y, Yang Y, Gu J L, Yan H L, Zhao X, Zuo L 2020 Mater. Today Commun. 22 100810Google Scholar

    [40]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [41]

    Ghosh S, Ghosh S 2019 Phys. Rev. B 99 064112Google Scholar

    [42]

    Shi X Y, Gao R R, Li J Q, Lu T Y, Luo H Z 2022 J. Magn. Magn. Mater. 547 168815Google Scholar

    [43]

    Singh N, Dogan E, Karaman I, Arróyave R 2011 Phys. Rev. B 84 184201Google Scholar

  • 图 1  Co2NiGa合金晶体结构图 (a)奥氏体相; (b)马氏体相

    Fig. 1.  Crystal structures of Co2NiGa alloy: (a) Austenitic phase; (b) martensitic phase.

    图 2  L21-和XA-Co2NiGa合金Etotrws的变化关系, 及四组非化学计量比合金平衡体积下$\Delta E_{{\text{tot}}}^{X\text-L} \text{-} x$关系 (a) Etot; (b) $\Delta E_{{\text{tot}}}^{X\text-L}$

    Fig. 2.  Etot of L21- and XA-Co2NiGa alloys change with respect to rws, together with the trends of $\Delta E_{{\text{tot}}}^{X{\text{-}}L} \text{-} x$ of the four off-stoichiometric alloys at equilibrium volume: (a) Etot; (b) $\Delta E_{{\text{tot}}}^{X\text-L}$.

    图 3  L21-和XA-Co2NiGa合金Etot (单位: Ry)随四方晶格c/arws的变化关系图 (a) L21-Co2NiGa; (b) XA-Co2NiGa

    Fig. 3.  Etot (in Ry) of L21- and XA-Co2NiGa alloys change with respect to the tetragonal lattice c/a and rws: (a) L21-Co2NiGa; (b) XA-Co2NiGa.

    图 4  XA-Co2+xNi1–xGa和Co2+xNiGa1–x (0 ≤ x ≤ 0.4)合金Etotc/a的变化关系 (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x

    Fig. 4.  Etot of XA-Co2+xNi1–xGa and Co2+xNiGa1–x (0 ≤ x ≤ 0.4) alloys change with respect to c/a: (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x

    图 5  XA-Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金Etotc/a的变化关系 (a) Co2–xNi1+xGa; (b) Co2Ni1+xGa1–x

    Fig. 5.  Etot of XA-Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys change with respect to c/a: (a) Co2–xNi1+xGa; (b) Co2Ni1+xGa1–x.

    图 6  四组非化学计量比合金两相各原子的磁矩以及μtotx的变化关系 (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x; (c) Co2–xNi1+xGa; (d) Co2Ni1+xGa1–x

    Fig. 6.  x-dependence of the magnetic moments for each atom in both phases and the μtot of the four off-stoichiometric alloys: (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x; (c) Co2–xNi1+xGa; (d) Co2Ni1+xGa1–x.

    图 7  XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金的C44C′以及四组合金L10相的Csx的变化关系 (a) C44; (b) C' and Cs

    Fig. 7.  x-dependence of both C44 and C' of the XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys and Cs of the four alloys with L10 phase: (a) C44; (b) C' and Cs.

    图 8  XA-和L10-Co2NiGa合金电子总态密度(DOS), CoI和CoII, Ni, Ga原子的局域DOS对比 (a) Tot; (b) CoI and CoII; (c) Ni; (d) Ga

    Fig. 8.  Total electron density of states (DOS) and local DOS corresponding to CoI and CoII, Ni, Ga atoms of XA- and L10-Co2NiGa alloys: (a) Tot; (b) CoI and CoII; (c) Ni; (d) Ga.

    表 1  XA-Co2.2Ni0.8Ga, Co2.2NiGa0.8, Co1.8Ni1.2Ga和Co2Ni1.2Ga0.8合金在铁磁和非自旋极化下各原子占位的∆Etot$ \Delta {E'_{{\text{tot}}}} $, 及它们在铁磁状态下的体积和μtot的理论值

    Table 1.  Etot and $ \Delta {E'_{{\text{tot}}}} $ for respective site occupations of the ferromagnetic and non-spin-polarized XA-Co2.2Ni0.8Ga, Co2.2NiGa0.8, Co1.8Ni1.2Ga and Co2Ni1.2Ga0.8 alloys, together with their theoretical values of the volume and μtot in the ferromagnetic state.

    AlloysSite occupancy∆Etot/mRy$ \Delta {E'_{{\text{tot}}}} $/mRyV/(Å3·atom–1)μtot/μB
    Co2.2Ni0.8GaCo2(Ni0.8Co0.2)Ga0011.7063.064
    Co2(Ni0.8Ga0.2)(Ga0.8Co0.2)5.3955.56811.8013.356
    Co2.2NiGa0.8Co2Ni(Ga0.8Co0.2)0011.6303.488
    Co2(Ni0.8Co0.2)(Ga0.8Ni0.2)0.6880.21111.6243.402
    Co1.8Ni1.2Ga(Co0.8Ni0.2)CoNiGa0011.7002.539
    Co(Co0.8Ni0.2)NiGa0.3170.68111.7102.559
    (Co0.8Ga0.2)CoNi(Ga0.8Ni0.2)2.4411.95311.7482.569
    Co(Co0.8Ga0.2)Ni(Ga0.8Ni0.2)5.7915.79811.8552.798
    Co2Ni1.2Ga0.8Co2Ni(Ga0.8Ni0.2)0011.6073.167
    (Co0.8Ni0.2)CoNi(Ga0.8Co0.2)–1.023–0.61711.6483.253
    Co(Co0.8Ni0.2)Ni(Ga0.8Co0.2)–0.717–0.15311.6153.255
    下载: 导出CSV

    表 2  XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金的e/a、体积和电子密度, 以及L10相对应的体积和c/a的EMTO计算结果

    Table 2.  The e/a, volume and electron density of the XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys, and the corresponding volume and c/a of L10 by EMTO calculations.

    Alloyse/aXAL10
    V3n–3V3c/a
    Co2NiGa7.011.7060.59811.6291.260
    11.650[32]0.601[32]11.550[32]
    Co2.1Ni0.9Ga6.911.7090.59011.6301.254
    Co2.2Ni0.8Ga6.811.7060.58111.6301.248
    Co2.3Ni0.7Ga6.711.7000.57311.6281.242
    Co2.4Ni0.6Ga6.611.6940.56411.6271.236
    Co2.1NiGa0.97.611.6610.65211.5791.282
    Co2.2NiGa0.88.211.6300.70511.5251.305
    Co2.3NiGa0.78.811.4940.76611.4661.326
    Co2.4NiGa0.69.411.4580.82011.4051.344
    Co1.9Ni1.1Ga7.111.7100.60611.6341.260
    Co1.8Ni1.2Ga7.211.7000.61511.6351.263
    Co1.7Ni1.3Ga7.311.6980.62411.6361.266
    Co1.6Ni1.4Ga7.411.6910.63311.6371.269
    Co2Ni1.1Ga0.97.711.6600.66011.5801.284
    Co2Ni1.2Ga0.88.411.6480.72111.5251.306
    Co2Ni1.3Ga0.79.111.4450.79511.4671.327
    Co2Ni1.4Ga0.69.811.4390.85711.4051.346
    下载: 导出CSV

    表 3  L21-和XA-Co2NiGa合金的单晶弹性常数(C11, C12, C44C' = (C11 C12)/2)、多晶剪切弹性模量G和杨氏模量E的EMTO计算结果与理论参考值的对比

    Table 3.  Single crystal elastic constants (C11, C12, C44 and C' = (C11 C12)/2), polycrystalline shear elastic modulus G and Young’s modulus E of the L21- and XA-Co2NiGa alloys calculated by EMTO are in comparison with the theoretical reference values.

    AlloysSite occupancyMethodsC11/GPaC12/GPaC44/GPaC'/GPaG/GPaE/GPa
    Co2NiGaL21EMTO194.20172.68136.7210.7655.20150.22
    PAW[38]181186141–2.552139
    PAW[39]166.96150.50111.258.2349.44134.15
    XAEMTO176.29182.55110.91–3.1328.5681.40
    下载: 导出CSV
  • [1]

    Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219

    [2]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393Google Scholar

    [3]

    Ahmad A, Guchhait S, Ahmad H, Srivastava S K, Das A K 2019 International Conference on Advances in Basic Sciences Bahal, India, February 07–09, 2019 p090006

    [4]

    XU X, Nagasako M, Ito W, Umetsu R Y, Kanomata T, Kainuma R 2013 Acta Mater. 61 6712Google Scholar

    [5]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [6]

    Kierstead H A, Dunlap B D, Malik S K, Umarji A M, Shenoy G K 1985 Phys. Rev. B 32 135Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. Jpn. 36 620Google Scholar

    [8]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta Mater. 58 3655Google Scholar

    [9]

    Guezlane M, Baaziz H, Hassan F E H, Charifi C, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [10]

    Planes A, Mañosa L, Acet M 2009 J. Phys. :Condens. Matter 21 233201Google Scholar

    [11]

    Chabungbam S, Borgohain P, Ghosh S, Singh N, Sahariah M B 2016 J. Alloys Compd. 689 199Google Scholar

    [12]

    Shreder E I, Lukoyanov A V, Makhnev A A, Baglasov E D, Suresh K G 2019 Phys. Met. Metall. 120 729Google Scholar

    [13]

    Sokolovskiy V, Miroshkina O N, Sanosyan A, Baigutlin D, Buchelnikov V, Gruner M E 2022 J. Magn. Magn. Mater. 546 168728Google Scholar

    [14]

    Pereira M J, Santos T, Correia R, Amaral J S, Amaral V S, Fabbrici S, Albertini F 2021 J. Magn. Magn. Mater. 538 168283Google Scholar

    [15]

    Yan S M, Pu J, Chi B, Li J 2011 Chin. Sci. Bull. 56 796Google Scholar

    [16]

    Craciunescu C, Kishi Y, Lograsso T A, Wuttig M 2002 Scr. Mater. 47 285Google Scholar

    [17]

    Biswas C, Rawat R, Barman S R 2005 Appl. Phys. Lett. 86 202508Google Scholar

    [18]

    Li C M, Yang S J, Zhou J P 2022 Chin. Phys. B 31 056105Google Scholar

    [19]

    Siewert M, Gruner M E, Hucht A, Herper H C, Dannenberg A, Chakrabarti A, Singh N, Arróyave R, Entel P 2012 Adv. Eng. Mater. 14 530Google Scholar

    [20]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [21]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [22]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [23]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [24]

    Bain E C 1924 Trans. Am. Inst. Min. Metall. Eng. 70 25

    [25]

    Cao P Y, Tian F Y, Li W, Vitos L, Wang Y D 2021 Acta Mater. 210 116816Google Scholar

    [26]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [27]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [28]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Thesis (Shenyang: Shangyang Normal University) (in Chinese)

    [29]

    杨顺杰, 李春梅, 周金萍 2022 物理学报 71 106201Google Scholar

    Yang S J, Li C M, Zhou J P 2022 Acta Phys. Sin. 71 106201Google Scholar

    [30]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Materials Science Forum (Switzerland: Trans Tech Publications) p1

    [32]

    Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A, Entel P 2010 Phys. Rev. B 82 064420Google Scholar

    [33]

    Eleno L T F, Chivukula A, Arróyave R, Schön C G 2010 TOFA 2010-Discusion Meeting on Thermodynamics of Alloys Porto, Portugual, September 14, 2010

    [34]

    Olivos E, Miranda A L, Singh N, Arróyave R, Romero A H 2012 Ann. Phys. 524 212Google Scholar

    [35]

    Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y, Garay A 2010 Acta Mater. 58 5220Google Scholar

    [36]

    Li Q S, Liang Z Y, Sun K C, Luo H Z 2019 Comput. Mater. Sci. 168 11Google Scholar

    [37]

    Matsushita Y I, Madjarova G, Dewhurst J K, Shallcross S, Felser C, Sharma S, Gross E K U 2017 J. Phys. D:Appl. Phys. 50 095002Google Scholar

    [38]

    Talapatra A, Arróyave R, Entel P, Valencia-Jaime I, Romero A H 2015 Phys. Rev. B 92 054107Google Scholar

    [39]

    Bai J, Liu D, Huang R K, Zhang Z Y, Yang Y, Gu J L, Yan H L, Zhao X, Zuo L 2020 Mater. Today Commun. 22 100810Google Scholar

    [40]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [41]

    Ghosh S, Ghosh S 2019 Phys. Rev. B 99 064112Google Scholar

    [42]

    Shi X Y, Gao R R, Li J Q, Lu T Y, Luo H Z 2022 J. Magn. Magn. Mater. 547 168815Google Scholar

    [43]

    Singh N, Dogan E, Karaman I, Arróyave R 2011 Phys. Rev. B 84 184201Google Scholar

  • [1] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [8] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] 辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志. 等价电子数组元Heusler合金Fe2RuSi中的原子占位. 物理学报, 2016, 65(14): 147102. doi: 10.7498/aps.65.147102
    [10] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [11] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [12] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄. 亚铁磁Heusler合金Mn2CoGa和Mn2CoAl掺杂Cr, Fe和Co的局域铁磁结构. 物理学报, 2013, 62(3): 037501. doi: 10.7498/aps.62.037501
    [13] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究. 物理学报, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [14] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [18] 徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅. 纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究. 物理学报, 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  2012
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-05-18
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回