搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MAPbI3/Graphene/Si复合结构的高灵敏宽带太赫兹调制器

赖伟恩 邬宗冬 李力奇 刘根 方彦俊

引用本文:
Citation:

基于MAPbI3/Graphene/Si复合结构的高灵敏宽带太赫兹调制器

赖伟恩, 邬宗冬, 李力奇, 刘根, 方彦俊

Highly sensitive broadband terahertz modulator based on MAPbI3/Graphene/Si composite structure

Lai Wei-En, Wu Zong-Dong, Li Li-Qi, Liu Gen, Fang Yan-Jun
PDF
HTML
导出引用
  • 高性能硅基太赫兹调制器是构建超宽带太赫兹-光纤混合通信系统的关键器件之一. 提出了一种基于钙钛矿/石墨烯/硅(MAPbI3/Graphene/Si)复合结构的近红外光驱动的超宽带大调制深度太赫兹调制器. 实验结果表明, 石墨烯薄膜和钙钛矿空穴传输层在近红外光驱动下可有效地促进界面电荷分离, 增大载流子复合寿命, 显著增强器件的表面电导率, 进一步调控太赫兹波的传输幅度, 实现光控型太赫兹波调制器的功能. 通过波长808 nm的近红外调制激励源, 对器件在0.2—2.5 THz超宽频率范围的太赫兹透射特性进行表征, 实验用6.1 mW/mm2的低功率密度近红外光驱动下实现了高达88.3%的大调制深度, 远高于裸硅基底的调制深度(约14.0%), 具有高灵敏、宽带和大调制深度等显著优势, 并且建立了相应的半解析器件模型, 仿真验证了实验结果. 所提出的MAPbI3/Graphene复合薄膜在增强硅基调制器性能方面效果显著, 为未来实现硅基太赫兹调制器在近红外太赫兹-光纤混合通信系统的集成提供了一种新策略.
    A high-performance silicon-based terahertz modulator is one of the key devices for building an ultrawideband terahertz-fiber hybrid communication system. In this paper, an ultrawideband terahertz modulator with large modulation depth based on a chalcogenide/graphene/silicon (MAPbI3/Graphene/Si) composite structure driven by near-infrared light (NIR) is proposed. The experimental results show that the graphene thin film and the chalcogenide hole transport layer can effectively promote the interfacial charge separation, increase the carrier complex lifetime, significantly enhance the surface conductivity of the device, further modulate the terahertz wave transmission amplitude, and realize the function of the light-controlled terahertz wave modulator under the NIR light drive. The terahertz transmission characteristics of the device are characterized by an 808 nm NIR modulation excitation source, and a large modulation depth of up to 88.3% is achieved in an ultra-wide frequency range of 0.2–2.5 THz and a low power density of 6.1 mW/mm2 driven by NIR light, which is much higher than that of the bare silicon substrate (14.0%), with the significant advantages of high sensitivity, broadband, and large modulation depth. The corresponding semi-analytical device model is established and the experimental results are verified by simulation. The proposed MAPbI3/Graphene composite thin film is effective in enhancing the silicon-based modulator performance and provides a new strategy for the future integration of silicon-based terahertz modulators in NIR terahertz-fiber hybrid communication systems.
      通信作者: 赖伟恩, wnlai@hfut.edu.cn ; 方彦俊, jkfang@zju.edu.cn
    • 基金项目: 安徽省高校协同创新项目(批准号: GXXT-2022-015)和国家自然科学基金(批准号: 61905058)资助的课题.
      Corresponding author: Lai Wei-En, wnlai@hfut.edu.cn ; Fang Yan-Jun, jkfang@zju.edu.cn
    • Funds: Project supported by the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-015) and the National Natural Science Foundation of China (Grant No. 61905058).
    [1]

    Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar

    [2]

    Kawano Y 2013 Contemp. Phys. 54 143Google Scholar

    [3]

    Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar

    [4]

    Smith R A 2021 Appl. Sci. 11 11724Google Scholar

    [5]

    Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar

    [6]

    张真真, 黎华, 曹俊诚 2018 物理学报 67 090702Google Scholar

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar

    [7]

    Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar

    [8]

    Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar

    [9]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [10]

    Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar

    [11]

    Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar

    [12]

    Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar

    [13]

    田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 物理学报 64 028401Google Scholar

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar

    [14]

    Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar

    [15]

    Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar

    [16]

    Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar

    [17]

    Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar

    [18]

    Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar

    [19]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [20]

    Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar

    [21]

    Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar

    [22]

    Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar

    [23]

    Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar

    [24]

    Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar

    [25]

    Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar

    [26]

    Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar

    [27]

    Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar

    [28]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [29]

    Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar

    [30]

    Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar

    [31]

    Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar

    [32]

    Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar

    [33]

    Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar

    [34]

    Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar

    [35]

    Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar

    [36]

    Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar

    [37]

    Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar

    [38]

    Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar

  • 图 1  (a) MAPbI3/Graphene基调制器结构示意图, 左侧为三维示意图, 右侧为侧视图; (b)硅基底上MAPbI3/Graphene复合薄膜的SEM表征图, 左侧为俯视图, 右侧为侧视图; (c) MAPbI3薄膜在波长500—800 nm下的吸收光谱

    Fig. 1.  (a) Schematic diagram of MAPbI3/Graphene-based modulator structure; left, 3D schematic; right, side view; (b) SEM characterization of MAPbI3/Graphene composite thin film on silicon substrate; left, top view; right, side view; (c) absorption spectrum of MAPbI3 thin film at the wavelength range of 500–800 nm.

    图 2  (a) MAPbI3/Graphene模型光照示意图; (b) MAPbI3/Graphene复合薄膜加光激励后的能带示意图以及电子-空穴的流动情况

    Fig. 2.  (a) Schematic of MAPbI3/Graphene model with light; (b) schematic diagram of energy band of MAPbI3/Graphene composite thin film after adding light excitation and electron-hole flow condition.

    图 3  (a) Graphene/Si调制器和(b) MAPbI3/Graphene/Si调制器的I-V曲线测试示意图; (c) Graphene/Si调制器和(d) MAPbI3/Graphene/Si调制器在光照(红线)和无光照(蓝线)下的I-V测试曲线; (e) Graphene/Si调制器和(f) MAPbI3/Graphene/Si调制器在0.5 V偏压, 15.1 mW功率光激励下的开关响应曲线

    Fig. 3.  Schematic diagram of I-V curve test for (a) Graphene/Si modulator and (b) MAPbI3/Graphene/Si modulator; I-V test curves for (c) Graphene/Si modulator and (d) MAPbI3/Graphene/Si modulator under light (red line) and no light (blue line); switching response curves of (e) Graphene/Si modulator and (f) MAPbI3/Graphene/Si modulator under light excitation with 0.5 V bias and 15.1 mW power.

    图 4  在不同功率密度的激光照射下通过(a)裸硅和(b) MAPbI3/Graphene/Si传输的太赫兹脉冲时域波形; 在不同功率密度的激光照射下通过(c)裸硅和(d) MAPbI3/Graphene/Si传输的太赫兹脉冲的归一化透射; 在不同功率密度的激光照射下(e) 裸硅和(f) MAPbI3/Graphene/Si的太赫兹调制深度

    Fig. 4.  Time domain waveforms of terahertz pulses transmitted through (a) bare silicon and (b) MAPbI3/Graphene/Si under laser irradiation at different power density; normalized transmission of terahertz pulses transmitted through (c) bare silicon and (d) MAPbI3/Graphene/Si under laser irradiation at different power density; terahertz modulation depth of (e) bare silicon and (f) MAPbI3/Graphene/Si under laser irradiation at different power density.

    图 5  (a) MAPbI3/Graphene/Si复合结构的响应时间测试示意图; (b) 器件的响应时间函数

    Fig. 5.  (a) Schematic diagram of response time testing of MAPbI3/Graphene/Si composite structure; (b) response time function of device.

    图 6  (a) 仿真模拟模型示意图; (b) 通过改变模型的电导率来调制太赫兹脉冲的波形

    Fig. 6.  (a) Schematic diagram of the simulated model; (b) waveform of modulated terahertz pulse by changing conductivity of model.

    表 1  常见太赫兹调制器性能比较

    Table 1.  Performance comparison of common terahertz modulators.

    MaterialWavelength/nmPower density/(mW·mm–2)Spectral range/THzMD/%Reference
    MAPbI3/Graphene/Si8086.10.2—2.588.3This work
    MAPbI3/SiO2106453.10.1—1.066.2[33]
    MoS2/Si5322.40.2—2.075.0[34]
    Graphene/TiO2/Si80871.30.3—1.788.0[35]
    Silicon nanotip80860.00.1—4.091.6[36]
    MAPbBr3/Si45030.00.2—2.680.0[37]
    CsPbBr3/Si45020.00.23—0.3545.5[38]
    Graphene/Si780159.20.2—2.099.0[29]
    下载: 导出CSV
  • [1]

    Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar

    [2]

    Kawano Y 2013 Contemp. Phys. 54 143Google Scholar

    [3]

    Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar

    [4]

    Smith R A 2021 Appl. Sci. 11 11724Google Scholar

    [5]

    Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar

    [6]

    张真真, 黎华, 曹俊诚 2018 物理学报 67 090702Google Scholar

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar

    [7]

    Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar

    [8]

    Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar

    [9]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [10]

    Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar

    [11]

    Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar

    [12]

    Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar

    [13]

    田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 物理学报 64 028401Google Scholar

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar

    [14]

    Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar

    [15]

    Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar

    [16]

    Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar

    [17]

    Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar

    [18]

    Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar

    [19]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [20]

    Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar

    [21]

    Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar

    [22]

    Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar

    [23]

    Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar

    [24]

    Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar

    [25]

    Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar

    [26]

    Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar

    [27]

    Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar

    [28]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [29]

    Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar

    [30]

    Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar

    [31]

    Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar

    [32]

    Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar

    [33]

    Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar

    [34]

    Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar

    [35]

    Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar

    [36]

    Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar

    [37]

    Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar

    [38]

    Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar

  • [1] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器. 物理学报, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [3] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [5] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [6] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [7] 肖标, 张敏莉, 王洪波, 刘继延. 基于窄带隙聚合物的高性能可见-近红外光伏探测器. 物理学报, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [8] 张腾飞, 杨晶, 侯岩雪, 王伟伟, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦. 基于光参量变频与放大的高灵敏红外成像技术. 物理学报, 2016, 65(1): 014209. doi: 10.7498/aps.65.014209
    [9] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器. 物理学报, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [10] 马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子0u+(6P3/2)长程态的高灵敏光缔合光谱研究. 物理学报, 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [13] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [14] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜. 近红外波段CO高灵敏检测的稳定性研究. 物理学报, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [15] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [16] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [17] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [18] 孙吉勇, 黄尚廉, 张 洁, 张智海. 介质层充电对光栅光调制器驱动的影响. 物理学报, 2008, 57(6): 3600-3606. doi: 10.7498/aps.57.3600
    [19] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究. 物理学报, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
    [20] 李世忱. LiNbO3晶体压电应变光束调制器及激光锁模器解析. 物理学报, 1993, 42(6): 1020-1026. doi: 10.7498/aps.42.1020
计量
  • 文章访问数:  1878
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-05-17
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回