搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位合成方法制备超灵敏和高特异性的微型氢气传感器

葛一璇 于婷婷 梁文杰

引用本文:
Citation:

原位合成方法制备超灵敏和高特异性的微型氢气传感器

葛一璇, 于婷婷, 梁文杰

Preparation of ultra-sensitive and highly specific miniature hydrogen sensors by in situ synthesis methods

Ge Yi-Xuan, Yu Ting-Ting, Liang Wen-Jie
PDF
HTML
导出引用
  • 氢气传感器是化工生产中重要的安全监控设备. 低成本低功耗高灵敏的微型氢气($ {{\mathrm{H}}}_{2} $)气体传感器有重要的实用价值. 本研究工作基于微热板原位合成的方法获得一种金掺杂二氧化锡($ {\mathrm{S}}{\mathrm{n}}{{\mathrm{O}}}_{2} $)纳米结构超灵敏高特异性的微纳传感器. 研究表明, 该微纳传感器对浓度为50 ppm (1 ppm = 10–6)的$ {{\mathrm{H}}}_{2} $灵敏度高达100, 对重要干扰气体乙醇在同浓度的条件下灵敏度仅为$ {{\mathrm{H}}}_{2} $的1/22, 具有明显的抑制效果. 对同浓度的一氧化碳、甲烷不产生响应. X射线光电子能谱表征表明, 材料的缺陷氧比例是传感器超灵敏的主要原因. 同时原位制备的方法可以灵活且可扩展用于制备具有各种空心球纳米结构金属氧化物的高性能小型化气体传感器, 以获得优越的灵敏度和可调选择性 .
    Hydrogen, as one of the most well-developed green energy materials, has played an important role in industrial development, human production and life, and the treatment of diseases in recent years. Hydrogen sensor is an important safety monitoring equipment in chemical production. Developing long-term and efficient hydrogen gas sensor for real-time monitoring has become increasingly important and urgent. Hydrogen, as one of the main combustible gases present in the petrochemical production process, is of great research significance and challenging in meeting the need of cycling gas identification and highly sensitive detection. Therefore, it is of great practical value to develop the low-cost, low-power and highly sensitive miniature hydrogen gas sensors . In this work, a gold-doped tin dioxide nanostructured ultra-sensitive and highly specific micro-nanosensor is obtained based on the in-situ synthesis of micro-hot plates. It is shown that the sensitivity of this nanosensor is as high as 100 for hydrogen at 50 ppm, and the sensitivity of ethanol, an important interference gas, is only 1/22 of that of hydrogen at the same concentration, which has an obvious suppression effect. For the same concentration of carbon monoxide, methane and other interference gases do not show any response. XPS characterization shows that the defective oxygen ratio of the material is the main reason for the ultra-sensitivity of the sensor. Meanwhile, in this study, the precursor solution of gold-doped tin dioxide is prepared by using chloroauric acid and tin tetrachloride crystals as raw materials; the nanosized morphology structure is prepared by templating the generation of sensitive materials using polystyrene microspheres; the in-situ synthesis method is realized by applying a voltage to the calcination of a micro hot plate. Through this nanoscale templating in-situ heating method, a gold-loaded tin dioxide nanosensor is prepared. Note that the template assisted in-situ grown $ {\mathrm{A}}{\mathrm{u}} $ loaded Tin Oxide nano sensor is abbreviated as $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{Au}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ Sensor . In order to illustrate the sensing mechanism, we analyze the elemental compositions, and the results show that under the condition of the high defective oxygen content, the in-situ heating method of templated preparation of $ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ nano-sensor containing arrays of polystyrene spheres becomes an important reason for the ultra-sensitivity to hydrogen, high specificity, and the suppression of the important interfering gas, ethanol. Moreover, the in situ preparation method can be flexibly and scalably used to prepare high-performance miniaturized gas sensors with a variety of hollow-sphere nanostructured metal oxides, in order to obtain excellent sensitivity and adjustable selectivity.
      通信作者: 梁文杰, wjliang@iphy.ac.com
    • 基金项目: 中国石化创新计划(批准号: A-527)资助的课题.
      Corresponding author: Liang Wen-Jie, wjliang@iphy.ac.com
    • Funds: Project supported by the Sinopec Innovation Scheme, China (Grant No. A-527).
    [1]

    Kim D, Kim S, Shin H, Koo W, Jang J, Kang J, Jeong Y J, Kim I 2019 ACS Nano 13 6071Google Scholar

    [2]

    Hung P S, Chou Y S, Huang B H, Cheng I K, Wang G R, Chung W A, Pan F M, Wu P W 2020 Sens. Actuat. B Chem. 325 128779Google Scholar

    [3]

    Han M, Kim J K, Lee J, An H K, Yun J P, Kang S W, Jung D 2020 J. Nanosci. Nanotechnol. 20 4470Google Scholar

    [4]

    Yi J X, Zhang H, Zhang Z B, Chen D D 2018 Sens. Actuat. B Chem. 268 456Google Scholar

    [5]

    Okazaki S, Kawada H, Koshiba Y, Kasai N, Maru Y, Mizutani T, Takesaki Y, Shimano S 2023 Int. J. Hydrogen Energy 48 9512Google Scholar

    [6]

    Dinh T, Choi I, Son Y, Kim J 2016 Sens. Actuat. B Chem. 231 529Google Scholar

    [7]

    Ahmed S, Sinha S K 2022 Environ. Sci. Pollut. Res. 30 24975Google Scholar

    [8]

    Wang F, Hu K, Liu H, Zhao Q, Wang K, Zhang Y 2020 Int. J. Hydrogen Energy 45 7234Google Scholar

    [9]

    Zhou Q, Sussman A, Chang J, Dong J, Zettl A, Mickelson W 2015 Sens. Actuat. A 223 67Google Scholar

    [10]

    Wang J, Yang J, Chen D, Jin L, Li Y, Zhang Y, Xu L, Guo Y, Lin F, Wu F 2018 IEEE Sens. J. 18 6765Google Scholar

    [11]

    Bai H N, Guo H, Wang J, Dong Y, Liu B, Guo F Q, Chen D J, Zhang R, Zheng Y D 2021 Sens. Actuat. B Chem. 331 129441Google Scholar

    [12]

    Hu J, Zhang T, Chen Y, Xu P, Zheng D, Li X 2022 Nanomaterials 12 1001Google Scholar

    [13]

    Zhu Z, Xing X, Feng D, Li Z, Tian Y, Yang D 2021 Nanoscale 13 12669Google Scholar

    [14]

    Chen D L, Hou X X, Li T, Yin L, Fan B B, Wang H L, Li X J, Xu H L, Lu H X, Zhang R, Sun J 2011 Sens. Actuat. B Chem. 153 373Google Scholar

    [15]

    Luo X, Lou Z, Wang L, Zheng X, Zhang T 2014 New J. Chem. 38 84Google Scholar

    [16]

    Zhang Z L, Yin C B, Yang L, Jiang J, Guo Y 2019 J. Alloys Compd. 785 819Google Scholar

    [17]

    Meng X N, Bi M, Xiao Q, Gao W 2022 Int. J. Hydrogen Energy 47 3157Google Scholar

    [18]

    Wang Y, Zhao Z T, Sun Y J, Li P W, Ji J L, Chen Y, Zhang W D, Hu J 2017 Sens. Actuat. B Chem. 240 664Google Scholar

    [19]

    Algamili A S, Khir M H M, Dennis J O, Ahmed A Y, Alabsi S S, Ba Hashwan S S, Junaid M M 2021 Nanoscale Res. Lett. 16 16Google Scholar

    [20]

    Rao A, Long H, Harley-Trochimczyk A, Pham T, Zettl A, Carraro C, Maboudian R 2017 ACS Appl. Mater. Interfaces 9 2634Google Scholar

    [21]

    Zhang S M, Zhang P P, Wang Y, Ma Y Y, Zhong J, Sun X H 2014 ACS Appl. Mater. Interfaces 6 14975Google Scholar

    [22]

    Moulder J F, Chastain J, King R C 1992 Chem. Phys. Lett. 220 7

    [23]

    Zhang P, Sham T K 2003 Phys. Rev. Lett. 90 243001Google Scholar

    [24]

    Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S 2012 J. Am. Chem. Soc. 134 10251Google Scholar

  • 图 1  (a)微热板芯片的光学显微镜图; (b)模板化原位加热制备$ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $传感器, 其中, (1)小球自组装在前驱体溶液表面形成单层PS小球模板, (2)将微热板芯片以10°—20°的角度对含有PS小球阵列的前驱体溶液进行拾取, (3)将微热板芯片在室温下进行干燥, (4)原位加热微热板芯片至4.5 V(550 ℃)得到纳米碗状结构

    Fig. 1.  (a) Optical microscope image of micro hot plate chip; (b) preparation of $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ sensor by templated in-situ synthesis: (1) The spheres self-assemble on the surface of the precursor solution to form a monolayer PS sphere template, (2) pick up the micro hot plate chip at an angle of 10°–20° to the precursor solution containing the PS sphere array, (3) dry the microplate chip at room temperature, (4) in-situ heating of microhotplate chips to 4.5 V (550 ℃) to obtain a nanobowl-like structures.

    图 2  含有PS小球阵列模板法原位加热的$ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $前驱体材料的SEM图 (a)位于敏感材料表面的PS小球原位加热之前的排列图; (b)位于敏感材料表面的PS小球原位加热后得到纳米碗状的结构图

    Fig. 2.  SEM images of $ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ precursor material containing PS sphere array template method synthesized in-situ: (a) The arrangement of PS spheres located on the surface of sensitive material before in-situ heating; (b) the nano-bowl-like structure obtained after in-situ heating of PS spheres located on the surface of sensitive material.

    图 3  $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ 传感器及3种参考传感器在最佳工作温度下对浓度50 ppm氢气的响应结果图 (a) $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ 传感器, 含有PS小球阵列模板法原位加热的$ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $纳米传感器; (b)参考传感器1, 含有PS小球阵列模板法管式炉煅烧的$ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $纳米传感器; (c)参考传感器2, 含有PS小球阵列模板法原位加热的纯$ {{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $纳米传感器; (d)参考传感器3, 原位加热的$ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $纳米传感器

    Fig. 3.  The response of the $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ sensor and three reference sensors to 50 ppm hydrogen at optimum operating temperature: (a) $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ sensor, in-situ synthesis of $ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ nanosensor containing PS sphere array template method; (b) reference sensor 1, $ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ nanosensor containing PS pellet array template method of tube furnace calcination; (c) reference sensor 2, pure $ {{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ nanosensor containing PS pellet array template method of in-situ synthesis; (d) reference sensor 3: $ {\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ nanosensor of in-situ synthesis.

    图 4  TIS-Au-$ {{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ 传感器及3种参考传感器对50 ppm氢气及3种常见的石化背景下干扰气体的选择性对比图

    Fig. 4.  Comparison of the selectivity of the TIS-Au-$ {{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ sensor and three reference sensors for 50 ppm hydrogen and three common interfering gases in a petrochemical background.

    图 5  $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ 传感器及3种参考传感器在浓度范围为100—500 ppm氢气之间的线性响应范围

    Fig. 5.  The linear response of the $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ sensor and three reference sensors in the concentration range of 100–500 ppm hydrogen.

    图 6  $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ 传感器及3种参考传感器在不同区域的XPS光谱 (a) O区域; (b) Sn区域; (c) Au区域

    Fig. 6.  XPS spectra of $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $ Sensor and three reference sensor in different regions: (a) O region; (b) Sn region; (c) Au region.

    表 1  不同传感器的性能结果比较

    Table 1.  Comparison of performance results for different sensors.

    传感器最佳工作温度/℃对50 ppm氢气的灵敏响应度特异性(氢气: 乙醇)100—500 ppm氢气的线性灵敏度/ppm
    $ {\mathrm{T}}{\mathrm{I}}{\mathrm{S}}\text{-}{\mathrm{A}}{\mathrm{u}}\text{-}{{\mathrm{S}}{\mathrm{n}}{\mathrm{O}}}_{2} $传感器3001002234/100
    参考传感器13008.94.23/100
    参考传感器24008.72.28/100
    参考传感器3350102.57/100
    下载: 导出CSV
  • [1]

    Kim D, Kim S, Shin H, Koo W, Jang J, Kang J, Jeong Y J, Kim I 2019 ACS Nano 13 6071Google Scholar

    [2]

    Hung P S, Chou Y S, Huang B H, Cheng I K, Wang G R, Chung W A, Pan F M, Wu P W 2020 Sens. Actuat. B Chem. 325 128779Google Scholar

    [3]

    Han M, Kim J K, Lee J, An H K, Yun J P, Kang S W, Jung D 2020 J. Nanosci. Nanotechnol. 20 4470Google Scholar

    [4]

    Yi J X, Zhang H, Zhang Z B, Chen D D 2018 Sens. Actuat. B Chem. 268 456Google Scholar

    [5]

    Okazaki S, Kawada H, Koshiba Y, Kasai N, Maru Y, Mizutani T, Takesaki Y, Shimano S 2023 Int. J. Hydrogen Energy 48 9512Google Scholar

    [6]

    Dinh T, Choi I, Son Y, Kim J 2016 Sens. Actuat. B Chem. 231 529Google Scholar

    [7]

    Ahmed S, Sinha S K 2022 Environ. Sci. Pollut. Res. 30 24975Google Scholar

    [8]

    Wang F, Hu K, Liu H, Zhao Q, Wang K, Zhang Y 2020 Int. J. Hydrogen Energy 45 7234Google Scholar

    [9]

    Zhou Q, Sussman A, Chang J, Dong J, Zettl A, Mickelson W 2015 Sens. Actuat. A 223 67Google Scholar

    [10]

    Wang J, Yang J, Chen D, Jin L, Li Y, Zhang Y, Xu L, Guo Y, Lin F, Wu F 2018 IEEE Sens. J. 18 6765Google Scholar

    [11]

    Bai H N, Guo H, Wang J, Dong Y, Liu B, Guo F Q, Chen D J, Zhang R, Zheng Y D 2021 Sens. Actuat. B Chem. 331 129441Google Scholar

    [12]

    Hu J, Zhang T, Chen Y, Xu P, Zheng D, Li X 2022 Nanomaterials 12 1001Google Scholar

    [13]

    Zhu Z, Xing X, Feng D, Li Z, Tian Y, Yang D 2021 Nanoscale 13 12669Google Scholar

    [14]

    Chen D L, Hou X X, Li T, Yin L, Fan B B, Wang H L, Li X J, Xu H L, Lu H X, Zhang R, Sun J 2011 Sens. Actuat. B Chem. 153 373Google Scholar

    [15]

    Luo X, Lou Z, Wang L, Zheng X, Zhang T 2014 New J. Chem. 38 84Google Scholar

    [16]

    Zhang Z L, Yin C B, Yang L, Jiang J, Guo Y 2019 J. Alloys Compd. 785 819Google Scholar

    [17]

    Meng X N, Bi M, Xiao Q, Gao W 2022 Int. J. Hydrogen Energy 47 3157Google Scholar

    [18]

    Wang Y, Zhao Z T, Sun Y J, Li P W, Ji J L, Chen Y, Zhang W D, Hu J 2017 Sens. Actuat. B Chem. 240 664Google Scholar

    [19]

    Algamili A S, Khir M H M, Dennis J O, Ahmed A Y, Alabsi S S, Ba Hashwan S S, Junaid M M 2021 Nanoscale Res. Lett. 16 16Google Scholar

    [20]

    Rao A, Long H, Harley-Trochimczyk A, Pham T, Zettl A, Carraro C, Maboudian R 2017 ACS Appl. Mater. Interfaces 9 2634Google Scholar

    [21]

    Zhang S M, Zhang P P, Wang Y, Ma Y Y, Zhong J, Sun X H 2014 ACS Appl. Mater. Interfaces 6 14975Google Scholar

    [22]

    Moulder J F, Chastain J, King R C 1992 Chem. Phys. Lett. 220 7

    [23]

    Zhang P, Sham T K 2003 Phys. Rev. Lett. 90 243001Google Scholar

    [24]

    Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S 2012 J. Am. Chem. Soc. 134 10251Google Scholar

  • [1] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究. 物理学报, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [2] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [3] 毕文杰, 杨爽, 周静, 金伟, 陈文. Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究. 物理学报, 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [4] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [5] 孙永娇, 王世贞, 张文磊, 王文达, 张文栋, 胡杰. MOF衍生锌钴复合微结构的制备及环己酮气敏性能研究. 物理学报, 2022, 71(10): 100701. doi: 10.7498/aps.71.20212114
    [6] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [7] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [9] 徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫. 基于第一性原理的二维材料黑磷砷气体传感器的机理研究. 物理学报, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [10] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [11] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [12] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [13] 薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅. 多孔ZnO微米球的制备及其优异的丙酮敏感特性. 物理学报, 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [14] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [15] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究. 物理学报, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [16] 张晓星, 孟凡生, 唐炬, 杨冰. 羟基碳纳米管吸附SF6放电分解组分的DFT计算. 物理学报, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [17] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理. 物理学报, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [18] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [19] 夏明霞, 颜 宁, 李红星, 宁乃东, 蔺西伟, 谢 中. 外加电场作用下碳纳米管结构稳定性及结构修饰研究. 物理学报, 2007, 56(1): 113-116. doi: 10.7498/aps.56.113
    [20] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
计量
  • 文章访问数:  2001
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-10-17
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回