-
随着石墨烯材料的发现, 二维材料被人们广泛认识并逐渐应用, 相比于传统二维材料, 二维过渡金属碳化物(MXene)的力学、磁学和电学性能更加优异. 本文分别利用HF溶液和LiF/HCl溶液刻蚀Ti3AlC2获得了Ti3C2Tx样品, 通过电子扫描显微镜(SEM)、X射线光电子能谱(XPS)和气敏特性分析, 研究了刻蚀剂对Ti3C2Tx材料结构和气敏性能的影响. 材料结构分析表明: HF和LiF/HCl刻蚀剂均对Ti3C2Tx材料具有良好的刻蚀效果; 气敏性能结果表明: LiF/HCl刻蚀剂制备的Ti3C2Tx的气敏性能优于HF刻蚀剂, 并实现了室温下宽范围、较高灵敏和较高稳定地检测NH3. 分析认为: LiF/HCl溶液刻蚀制备的Ti3C2Tx材料表面具有较高比例的—O和—OH官能团, 是其高传感性能的主要原因. 本实验研究可为Ti3C2Tx基传感器件的气敏研究和实际应用奠定一定的理论基础.Since the discovery of graphene materials, two-dimensional materials have been widely recognized and gradually applied. Two-dimensional transition metal carbides (MXenes) have better mechanical, magnetic and electrical properties than traditional two-dimensional materials. In this work, Ti3C2Tx samples are prepared by etching Ti3AlC2 with different etching agents for the solutions of HF and LiF/HCl. The effects of etching agents on the structure and gas sensing properties of Ti3C2Tx materials are studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and gas sensing properties analysis. The material structure analysis shows that both HF and LiF/HCl etching agents have good etching effect on Ti3C2Tx material. The results of gas sensing properties show that the gas sensing properties of Ti3C2Tx prepared by LiF/HCl etching agent is better than by HF etching agent, and the wide range, high sensitivity and high stability of NH3 detection can be achieved at room temperature. The analysis shows that the high sensing performance of Ti3C2Tx prepared by LiF/HCl solution etching is mainly due to the high proportion of —O and —OH functional groups on the surface of Ti3C2Tx. The experimental studies can lay a theoretical foundation for studying the gas sensing and practical application of Ti3C2Tx based sensor.
-
Keywords:
- two-dimensional materials /
- MXene /
- Ti3C2Tx /
- gas sensor
[1] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar
[2] Deysher G, Shuck C E, Hantanasirisakul K, Frey N C, Foucher A C, Maleski K, Sarycheva A, Shenoy V B, Stach E A, Anasori B, Gogotsi Y 2020 ACS Nano 14 204Google Scholar
[3] Sokol M, Natu V, Kota S, Barsoum M W 2019 Trends Environ. Anal. Chem. 1 210Google Scholar
[4] Tao Q, Lu J, Dahlqvist M, Mockute A, Calder S, Petruhins A, Meshkian R, Rivin O, Potashnikov D, Caspi E a N, Shaked H, Hoser A, Opagiste C, Galera R M, Salikhov R, Wiedwald U, Ritter C, Wildes A R, Johansson B, Hultman L, Farle M, Barsoum M W, Rosen J 2019 Chem. of Mater. 31 2476Google Scholar
[5] Shein I R, Ivanovskii A L 2013 Micro Nano Lett. 8 59Google Scholar
[6] Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y 2018 Nat. Commun. 9 155Google Scholar
[7] Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar
[8] Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H 2017 Angew. Chem. Int. Ed. Engl. 56 1825Google Scholar
[9] Khazaei M, Ranjbar A, Ghorbani Asl M, Arai M, Sasaki T, Liang Y, Yunoki S 2016 Phys. Rev. B 93 205125Google Scholar
[10] Yang Z, Jiang L, Wang J, Liu F, He J, Liu A, Lv S, You R, Yan X, Sun P, Wang C, Duan Y, Lu G 2021 Sens. Actuators B Chem. 326 128828Google Scholar
[11] Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y 2019 Sens. Actuators B Chem. 298 126874Google Scholar
[12] Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A 2019 ACS Sens. 4 2763Google Scholar
[13] Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L 2017 Mater. Des. 114 161Google Scholar
[14] Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Naslund L A, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W 2014 Chem. Mater. 26 2374Google Scholar
[15] Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. Engl. 57 15491Google Scholar
[16] 黄大朋 2020 博士学位论文 (济南: 山东大学)
Huang D P 2020 Ph. D. Dissertation(Jinan: Shandong University) (in Chinese)
[17] Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Inter. 9 37184Google Scholar
[18] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar
[19] Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar
[20] Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W 2016 Appl. Surf. Sci. 362 406Google Scholar
[21] Wu Y, Nie P, Wang J, Dou H, Zhang X 2017 ACS Appl. Mater. Interfaces 9 39610Google Scholar
[22] Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T 2018 ACS Nano 12 986Google Scholar
[23] Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum M W 2016 Chem. Mater. 28 3507Google Scholar
[24] Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon 91 178Google Scholar
[25] Geistlinger H 1993 Sens. Actuators B Chem. 17 47Google Scholar
[26] Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 445502Google Scholar
[27] Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B 2015 ACS Appl. Mater. Inter. 7 13707Google Scholar
[28] Tang Q, Zhou Z, Shen P 2012 J. Am. Chem. Soc. 134 16909Google Scholar
[29] Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nature Reviews Materials 2 16098
[30] Xiao B, Li Y C, Yu X F, Cheng J B 2016 Sens. Actuators B Chem. 235 103Google Scholar
[31] Ghosh R, Singh A, Santra S, Ray S K, Chandra A, Guha P K 2014 Sens. Actuators B Chem. 205 67Google Scholar
-
图 3 HF溶液刻蚀制备Ti3C2Tx材料的 (a) XPS光谱图; (b) Ti 2p光谱; (c) C 1s光谱和(d) O 1s光谱; LiF/HCl溶液刻蚀制备Ti3C2Tx材料的(e) XPS光谱图; (f) Ti 2p光谱; (g) C 1s光谱和(h) O 1s光谱
Fig. 3. (a) XPS spectra of Ti3C2Tx prepared by HF solution etching; (b) Ti 2p spectrum; (c) C 1s spectrum and (d) O 1s spectrum; (e) XPS spectra of Ti3C2Tx prepared by LiF/HCl solution etching; (f) Ti 2p spectrum; (g) C 1s spectrum; (h) O 1s spectrum.
图 4 室温下, (a) HF溶液, (b) LiF/HCl溶液刻蚀制备Ti3C2Tx基气体传感器对不同浓度NH3的响应度; (c) HF溶液, (d) LiF/HCl溶液刻蚀制备的Ti3C2Tx基气体传感器的响应度随NH3浓度变化的朗缪尔等温线
Fig. 4. Response of Ti3C2Tx based gas sensor prepared by etching: (a) HF solution and (b) LiF/HCl solution to NH3 with different concentrations at room temperature; Langmuir isotherm of the responsivity of Ti3C2Tx based gas sensor prepared by the etching of (c) HF solution and (d) LiF/HCl solution.
图 5 室温下, (a) HF溶液刻蚀制备和(b) LiF/HCl溶液刻蚀制备的Ti3C2Tx基气体传感器对10 ppm NH3的重复性; (c)室温下, 两种刻蚀剂刻蚀制备的Ti3C2Tx基气体传感器对10 ppm NH3 的稳定性; (d)室温下, 两种刻蚀剂刻蚀制备的Ti3C2Tx基气体传感器对不同气体的响应度
Fig. 5. At room temperature, (a) Ti3C2Tx based gas sensor prepared by etching HF solution and (b) Ti3C2Tx based gas sensor prepared by etching LiF/HCl solution was repeatable to 10 ppm NH3. (c) at room temperature, the stability of Ti3C2Tx based gas sensor prepared by two etching agents for 10 ppm NH3; (d) response of Ti3C2Tx based gas sensor etched by two etching agents to different gases at room temperature.
图 6 气体分子吸附在不同端接官能团Ti3C2Tx上的密度泛函理论模拟结果 (a) Ti3C2(OH)2, (b) Ti3C2O2和(c) Ti3C2F2上NH3最小能量配置的侧面和顶部视图(1 Å = 0.1 nm)
Fig. 6. DFT simulation results of gas molecules adsorbed on different terminated functional groups Ti3C2Tx. Side and top views of the minimum energy configuration for NH3 on (a) Ti3C2(OH)2, (b) Ti3C2O2 and (c) Ti3C2F2 (1 Å = 0.1 nm).
表 1 两种不同刻蚀剂制备获得的Ti3C2Tx材料比表面积
Table 1. Specific surface area of Ti3C2Tx prepared by two different etchers.
样品 刻蚀剂 比表面积/(m2·g–1) Ti3C2Tx HF溶液 5.265 Ti3C2Tx LiF/HCl溶液 5.263 Table 2. Figs. 4(c) and 4(d) Langmuir isotherm coefficients.
刻蚀剂 LiF/HCl HF 工作温度 室温 室温 a 38.94405 14.41327 b 0.06246 0.3099 -
[1] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar
[2] Deysher G, Shuck C E, Hantanasirisakul K, Frey N C, Foucher A C, Maleski K, Sarycheva A, Shenoy V B, Stach E A, Anasori B, Gogotsi Y 2020 ACS Nano 14 204Google Scholar
[3] Sokol M, Natu V, Kota S, Barsoum M W 2019 Trends Environ. Anal. Chem. 1 210Google Scholar
[4] Tao Q, Lu J, Dahlqvist M, Mockute A, Calder S, Petruhins A, Meshkian R, Rivin O, Potashnikov D, Caspi E a N, Shaked H, Hoser A, Opagiste C, Galera R M, Salikhov R, Wiedwald U, Ritter C, Wildes A R, Johansson B, Hultman L, Farle M, Barsoum M W, Rosen J 2019 Chem. of Mater. 31 2476Google Scholar
[5] Shein I R, Ivanovskii A L 2013 Micro Nano Lett. 8 59Google Scholar
[6] Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y 2018 Nat. Commun. 9 155Google Scholar
[7] Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar
[8] Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H 2017 Angew. Chem. Int. Ed. Engl. 56 1825Google Scholar
[9] Khazaei M, Ranjbar A, Ghorbani Asl M, Arai M, Sasaki T, Liang Y, Yunoki S 2016 Phys. Rev. B 93 205125Google Scholar
[10] Yang Z, Jiang L, Wang J, Liu F, He J, Liu A, Lv S, You R, Yan X, Sun P, Wang C, Duan Y, Lu G 2021 Sens. Actuators B Chem. 326 128828Google Scholar
[11] Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y 2019 Sens. Actuators B Chem. 298 126874Google Scholar
[12] Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A 2019 ACS Sens. 4 2763Google Scholar
[13] Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L 2017 Mater. Des. 114 161Google Scholar
[14] Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Naslund L A, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W 2014 Chem. Mater. 26 2374Google Scholar
[15] Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. Engl. 57 15491Google Scholar
[16] 黄大朋 2020 博士学位论文 (济南: 山东大学)
Huang D P 2020 Ph. D. Dissertation(Jinan: Shandong University) (in Chinese)
[17] Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Inter. 9 37184Google Scholar
[18] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar
[19] Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar
[20] Halim J, Cook K M, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum M W 2016 Appl. Surf. Sci. 362 406Google Scholar
[21] Wu Y, Nie P, Wang J, Dou H, Zhang X 2017 ACS Appl. Mater. Interfaces 9 39610Google Scholar
[22] Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T 2018 ACS Nano 12 986Google Scholar
[23] Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum M W 2016 Chem. Mater. 28 3507Google Scholar
[24] Choi Y R, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon 91 178Google Scholar
[25] Geistlinger H 1993 Sens. Actuators B Chem. 17 47Google Scholar
[26] Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 445502Google Scholar
[27] Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B 2015 ACS Appl. Mater. Inter. 7 13707Google Scholar
[28] Tang Q, Zhou Z, Shen P 2012 J. Am. Chem. Soc. 134 16909Google Scholar
[29] Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nature Reviews Materials 2 16098
[30] Xiao B, Li Y C, Yu X F, Cheng J B 2016 Sens. Actuators B Chem. 235 103Google Scholar
[31] Ghosh R, Singh A, Santra S, Ray S K, Chandra A, Guha P K 2014 Sens. Actuators B Chem. 205 67Google Scholar
计量
- 文章访问数: 12036
- PDF下载量: 325
- 被引次数: 0