-
以锑化铯(Cs3Sb)为代表的碱金属型半导体光阴极具有高量子效率、低电子发射度、光谱响应快等特点, 可作为理想的新型电子发射源. 然而Cs3Sb中碱金属敏感于含氧气体, 从而导致其结构不稳定, 工作寿命低, 影响电子发射效率. 利用超薄层状的二维材料进行涂层保护Cs3Sb基底, 有望构建新型高性能光阴极材料, 但目前仍然缺乏适合的二维材料, 能够在保护基底同时维持低功函数(W )和高量子效率. 近年来二维过渡金属碳/氮化物(MXene)材料逐渐成为研究热点, 其灵活引入的悬挂键可以很好地调控MXene材料的结构和电子特性. 本文系统构建了一系列M2CT2-Cs3Sb异质结, 基于第一性原理计算分析了过渡金属元素(M)、原子配比(M/C)、堆垛构型及悬挂键(T)等对其W的影响. 研究表明, 不同悬挂键类型对构建异质结的W影响显著, 相对于其他悬挂键(—F/—O/—Cl/—S/—NH), 带有—OH/—OCH3悬挂键构成的M2CT2-Cs3Sb异质结具有相对较低的W. 利用差分电荷密度和能级矫正分析解释了异质结W的变化原因, 即异质结界面电荷重新分布导致界面偶极方向不同, 造成电子逸出的势垒不同. 经过筛选后发现, M2C(OH)2 (M = V, Ti, Cr)和M2C(OCH3)2 (M = Ti, Cr, Nb)结构可以看作理想的涂层材料, 尤其是V2C(OH)2-Cs3Sb (W = 1.602 eV)和Ti2C(OCH3)2-Cs3Sb (W = 1.877 eV). 本研究不仅有助于深入理解MXene-Cs3Sb异质结电子结构和光学性质, 同时也为高性能光阴极材料的计算筛选提供参考依据.The alkali-based semiconductor cathodes, such as Cs3Sb that possesses high quantum efficiency, low electron emittance and short spectral response time, can be considered as ideal next-generation electron sources. However, the alkali-based emitters are found to be sensitive to the oxygen gases, which causes a series of problems such as structural instability, short lifetime, and reduced electron emitting efficiency. It is known that the employing of the ultra-thin layered two-dimensional (2D) materials to protect Cs3Sb basement can promote the development of novel cathodes with excellent performances. However, there is a lack of efficient 2D materials to maintain low work-function (W ) and high quantum efficiency. Recently, the MXene materials which contain layered transitional metal carbides, nitrides and carbonitrides, have attracted great attention particularly in the fields of catalysis and energy. Notably, their flexible types of dangling bonds can lead to tunable structural and electronic properties of MXene-based materials. Here in this work, the MXene-Cs3Sb heterostructures are modeled by using home-made script and systematically investigated by using first-principle calculations based on density functional theory. Further, the effects of transitional metal element (M), M/C ratio, stacking configuration and types of dangling bonds on the calculated W of heterostructures are studied. The result indicates that the type of dangling bond shows a more pronounced effect, and the MXene-Cs3Sb heterostructures with —OCH3/—OH possess lower W than other dangling bonds. The charge density difference and band alignment analysis are further used to illustrate the underlying reason for the change of W. And it is found that interlayer charge redistribution can result in different surface dipole directions, and thus emitting electrons with varying barriers. After computational screening based on the change of W, the M2C(OH)2 (M = V, Ti, Cr) and M2C(OCH3)2 (M = Ti, Cr, Nb) can be potentially considered as ideal coating materials, and especially for V2C(OH)2-Cs3Sb (W = 1.602 eV) and Ti2C(OCH3)2-Cs3Sb (W = 1.877 eV) with significantly reduced W. Finally, we believe that this work can not only give an in-depth insight into the electronic and optical properties of Cs3Sb-MXene heterostructures, but also provide the useful criteria for the computational screening of superior cathodes. Meanwhile, we further urgently expect the cooperative efforts from an experimental perspective to demonstrate the superior performances of those screened MXene-Cs3Sb photocathodes for practical applications.
-
Keywords:
- alkali-based cathodes /
- two-dimensional materials /
- heterostructures /
- first-principle theory
[1] Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar
[2] Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar
[3] Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar
[4] Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar
[5] Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar
[6] Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar
[7] Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar
[8] Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar
[9] Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142
[10] Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar
[11] Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar
[12] Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar
[13] Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar
[14] Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365
[15] Sommer A H 1973 Appl. Optics 12 90Google Scholar
[16] Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar
[17] Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar
[18] Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar
[19] Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar
[20] Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar
[21] Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar
[22] Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar
[23] Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar
[24] Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12
[25] Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar
[26] Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar
[27] Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar
[28] Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar
[29] Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)
[30] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002
[31] Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar
[32] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar
[33] Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar
[34] Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar
[35] Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar
[36] Shukla V 2020 Mater. Adv. 1 3104Google Scholar
[37] Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar
[38] Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar
[39] 陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar
Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar
[40] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[41] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar
[42] Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar
[43] Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar
[44] Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar
[45] Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar
[46] Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar
[47] Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar
[48] Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar
[49] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar
[50] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar
[51] Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar
[52] Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar
[53] Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar
[54] Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar
[55] Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar
[56] Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar
[57] Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar
[58] Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar
[59] 杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar
Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar
[60] 张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar
Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar
[61] Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar
[62] Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar
[63] Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar
[64] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[65] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[66] Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar
[67] Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar
[68] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[69] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[70] Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar
[71] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[72] Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar
[73] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar
[74] Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar
-
图 2 M2CT2结构的3种构型(M-top构型, X-top构型, Mixed构型)相比于无悬挂键的M2C结构的相对能量差(ΔE/eV), 其中颜色越蓝, 表示相对能量越低, 对应的构型则越稳定
Fig. 2. Relative energy difference (ΔE/eV) for the M-top, X-top and mixed configurations of M2CT2 structures with respect to those of M2C structures. The blue color represents the lowest energy and stable configuration.
图 4 Mixed型异质结示意图 (a)和(b) Model-1型和Model-2型Sc2CO2-Cs3Sb异质结; (c), (d)和(e), (f)则分别对应Ta2CS2-Cs3Sb和Zr2C(OH)2-Cs3Sb异质结. 红球, O原子; 灰球, C原子; 深紫色球, Cs原子; 浅紫色球, Sb原子; 绿球, Zr原子; 蓝球, Ta原子; 黄球, S原子; 白球, Sc/H原子; (a)中的A, B分别表示Cs3Sb基底中的Cs, Sb原子
Fig. 4. Mixed style of heterostructures, subgraph (a) and (b) refer to the Model-1 and Model-2 style of Sc2CO2-Cs3Sb structure, subgraph (c) and (d) to Ta2CS2-Cs3Sb, subgraph (e) and (f) to Zr2C(OH)2-Cs3Sb. The red, gray, dark purple, light purple, green, blue, yellow and white balls represent O, C, Cs, Sb, Zr, Ta, S and Sc/H atoms respectively. A and B in panel (a) refer to the Cs and Sb atoms respectively, in the Cs3Sb basement.
图 5 (a) M2CT2-Cs3Sb结构的功函数(W, eV)随过渡金属M和悬挂键T以及(b) M2CT2结构的亲和势(EA, eV)变化图
Fig. 5. (a) Changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of elements M and dangling bonds T (b) changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of electron affinity (EA, eV) of M2CT2.
表 1 Sc2CO2-Cs3Sb/Ta2CS2-Cs3Sb/Zr2C(OH)2-Cs3Sb的Model-1和Model-2型异质结的功函数和层间结合能
Table 1. Work-function and binding energy of Sc2CO2-Cs3Sb, Zr2C(OH)2-Cs3Sb and Ta2CS2-Cs3Sb in Model-1 and Model-2
M2CT2 M2CT2-Cs3Sb in Model-1 M2CT2-Cs3Sb in Model-2 W0/eV W1/eV ∆W1/eV Eb1/(meV·Å–2) W2/eV ∆W2/eV Eb2/(meV·Å–2) Sc2CO2 5.484 3.547 –1.937 –4.161 2.096 –3.388 –5.705 Ta2CS2 5.383 4.490 –0.893 –6.122 5.076 –0.307 –5.364 Zr2C(OH)2 1.701 2.064 0.363 –1.701 2.078 0.377 –1.778 表 2 带—OH和—OCH3悬挂键的M2CT2和M2CT2-Cs3Sb结构的功函数和层间结合能
Table 2. Work-function and binding energy of M2CT2 and M2CT2-Cs3Sb structures with dangling bonds of —OH and —OCH3
—OH M2C(OH)2-Cs3Sb —OCH3 M2C(OCH3)2-Cs3Sb W0/eV W1/eV ∆W1/eV Eb1/(meV·Å–2) W0/eV W2/eV ∆W2/eV Eb2/(meV·Å–2) Sc2CT2 1.549 1.969 0.05 –2.036 2.869 2.025 0.106 –2.101 Ti2CT2 1.642 1.897 –0.022 –2.235 1.571 1.877 –0.042 –1.678 V2CT2 1.743 1.602 –0.317 –2.065 1.88 1.965 0.046 –1.658 Cr2CT2 1.441 1.813 –0.106 –1.848 2.088 1.896 –0.023 –2.418 Y2CT2 1.348 2.096 0.177 –3.714 2.404 2.118 0.199 –1.696 Zr2CT2 1.700 2.047 0.128 –1.783 1.267 2.003 0.084 –1.300 Nb2CT2 2.012 2.126 0.207 –2.941 1.090 1.904 –0.015 –1.265 Mo2CT2 2.153 1.974 0.055 –1.934 1.610 1.961 0.042 –2.602 Hf2CT2 2.018 2.376 0.457 –3.441 1.582 1.964 0.045 –1.219 Ta2CT2 2.511 2.492 0.573 –2.497 1.375 1.952 0.033 –1.359 W2CT2 2.962 2.599 0.680 –0.600 2.732 1.946 0.027 –1.456 表 3 V2CT2的亲和势、V2CT2-Cs3Sb结构的功函数和结合能
Table 3. Electron affinity of V2CT2, work-function and binding energy of V2CT2-Cs3Sb
V2CT2 V2CT2-Cs3Sb EA/eV W/eV ∆W/eV Eb/(meV·Å–2) V2C 4.637 4.525 2.606 –5.846 V2CF2 5.542 5.373 3.454 –7.515 V2CO2 6.787 6.441 4.522 –12.23 V2C(OH)2 1.743 1.602 –0.317 –2.065 V2CS2 4.476 4.638 2.719 –5.140 V2CCl2 5.551 5.085 3.166 –7.342 V2C(OCH3)2 1.88 1.965 0.046 –1.659 V2C(NH)2 2.629 2.578 0.659 –3.062 -
[1] Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar
[2] Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar
[3] Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar
[4] Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar
[5] Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar
[6] Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar
[7] Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar
[8] Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar
[9] Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142
[10] Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar
[11] Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar
[12] Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar
[13] Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar
[14] Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365
[15] Sommer A H 1973 Appl. Optics 12 90Google Scholar
[16] Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar
[17] Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar
[18] Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar
[19] Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar
[20] Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar
[21] Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar
[22] Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar
[23] Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar
[24] Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12
[25] Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar
[26] Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar
[27] Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar
[28] Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar
[29] Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)
[30] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002
[31] Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar
[32] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar
[33] Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar
[34] Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar
[35] Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar
[36] Shukla V 2020 Mater. Adv. 1 3104Google Scholar
[37] Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar
[38] Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar
[39] 陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar
Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar
[40] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[41] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar
[42] Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar
[43] Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar
[44] Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar
[45] Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar
[46] Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar
[47] Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar
[48] Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar
[49] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar
[50] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar
[51] Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar
[52] Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar
[53] Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar
[54] Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar
[55] Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar
[56] Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar
[57] Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar
[58] Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar
[59] 杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar
Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar
[60] 张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar
Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar
[61] Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar
[62] Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar
[63] Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar
[64] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[65] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[66] Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar
[67] Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar
[68] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[69] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[70] Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar
[71] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[72] Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar
[73] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar
[74] Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar
计量
- 文章访问数: 6169
- PDF下载量: 120
- 被引次数: 0