搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选

白亮 赵启旭 沈健伟 杨岩 袁清红 钟成 孙海涛 孙真荣

引用本文:
Citation:

基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选

白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣

Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures

Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong
PDF
HTML
导出引用
  • 以锑化铯(Cs3Sb)为代表的碱金属型半导体光阴极具有高量子效率、低电子发射度、光谱响应快等特点, 可作为理想的新型电子发射源. 然而Cs3Sb中碱金属敏感于含氧气体, 从而导致其结构不稳定, 工作寿命低, 影响电子发射效率. 利用超薄层状的二维材料进行涂层保护Cs3Sb基底, 有望构建新型高性能光阴极材料, 但目前仍然缺乏适合的二维材料, 能够在保护基底同时维持低功函数(W )和高量子效率. 近年来二维过渡金属碳/氮化物(MXene)材料逐渐成为研究热点, 其灵活引入的悬挂键可以很好地调控MXene材料的结构和电子特性. 本文系统构建了一系列M2CT2-Cs3Sb异质结, 基于第一性原理计算分析了过渡金属元素(M)、原子配比(M/C)、堆垛构型及悬挂键(T)等对其W的影响. 研究表明, 不同悬挂键类型对构建异质结的W影响显著, 相对于其他悬挂键(—F/—O/—Cl/—S/—NH), 带有—OH/—OCH3悬挂键构成的M2CT2-Cs3Sb异质结具有相对较低的W. 利用差分电荷密度和能级矫正分析解释了异质结W的变化原因, 即异质结界面电荷重新分布导致界面偶极方向不同, 造成电子逸出的势垒不同. 经过筛选后发现, M2C(OH)2 (M = V, Ti, Cr)和M2C(OCH3)2 (M = Ti, Cr, Nb)结构可以看作理想的涂层材料, 尤其是V2C(OH)2-Cs3Sb (W = 1.602 eV)和Ti2C(OCH3)2-Cs3Sb (W = 1.877 eV). 本研究不仅有助于深入理解MXene-Cs3Sb异质结电子结构和光学性质, 同时也为高性能光阴极材料的计算筛选提供参考依据.
    The alkali-based semiconductor cathodes, such as Cs3Sb that possesses high quantum efficiency, low electron emittance and short spectral response time, can be considered as ideal next-generation electron sources. However, the alkali-based emitters are found to be sensitive to the oxygen gases, which causes a series of problems such as structural instability, short lifetime, and reduced electron emitting efficiency. It is known that the employing of the ultra-thin layered two-dimensional (2D) materials to protect Cs3Sb basement can promote the development of novel cathodes with excellent performances. However, there is a lack of efficient 2D materials to maintain low work-function (W ) and high quantum efficiency. Recently, the MXene materials which contain layered transitional metal carbides, nitrides and carbonitrides, have attracted great attention particularly in the fields of catalysis and energy. Notably, their flexible types of dangling bonds can lead to tunable structural and electronic properties of MXene-based materials. Here in this work, the MXene-Cs3Sb heterostructures are modeled by using home-made script and systematically investigated by using first-principle calculations based on density functional theory. Further, the effects of transitional metal element (M), M/C ratio, stacking configuration and types of dangling bonds on the calculated W of heterostructures are studied. The result indicates that the type of dangling bond shows a more pronounced effect, and the MXene-Cs3Sb heterostructures with —OCH3/—OH possess lower W than other dangling bonds. The charge density difference and band alignment analysis are further used to illustrate the underlying reason for the change of W. And it is found that interlayer charge redistribution can result in different surface dipole directions, and thus emitting electrons with varying barriers. After computational screening based on the change of W, the M2C(OH)2 (M = V, Ti, Cr) and M2C(OCH3)2 (M = Ti, Cr, Nb) can be potentially considered as ideal coating materials, and especially for V2C(OH)2-Cs3Sb (W = 1.602 eV) and Ti2C(OCH3)2-Cs3Sb (W = 1.877 eV) with significantly reduced W. Finally, we believe that this work can not only give an in-depth insight into the electronic and optical properties of Cs3Sb-MXene heterostructures, but also provide the useful criteria for the computational screening of superior cathodes. Meanwhile, we further urgently expect the cooperative efforts from an experimental perspective to demonstrate the superior performances of those screened MXene-Cs3Sb photocathodes for practical applications.
      通信作者: 孙海涛, htsun@phy.ecnu.edu.cn ; 孙真荣, zrsun@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12034008, 11727810, 51873160)资助的课题
      Corresponding author: Sun Hai-Tao, htsun@phy.ecnu.edu.cn ; Sun Zhen-Rong, zrsun@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034008, 11727810, 51873160).
    [1]

    Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar

    [2]

    Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar

    [4]

    Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar

    [5]

    Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar

    [6]

    Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar

    [7]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [8]

    Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [9]

    Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142

    [10]

    Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar

    [11]

    Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar

    [13]

    Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar

    [14]

    Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365

    [15]

    Sommer A H 1973 Appl. Optics 12 90Google Scholar

    [16]

    Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar

    [17]

    Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [18]

    Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar

    [19]

    Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar

    [20]

    Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar

    [21]

    Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar

    [22]

    Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar

    [23]

    Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar

    [24]

    Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12

    [25]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar

    [26]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar

    [27]

    Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar

    [28]

    Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar

    [29]

    Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)

    [30]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [31]

    Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar

    [32]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [33]

    Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar

    [34]

    Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar

    [35]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [36]

    Shukla V 2020 Mater. Adv. 1 3104Google Scholar

    [37]

    Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar

    [38]

    Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar

    [39]

    陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [40]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [41]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [42]

    Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar

    [43]

    Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar

    [44]

    Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar

    [45]

    Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar

    [46]

    Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar

    [47]

    Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar

    [48]

    Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar

    [49]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [50]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [51]

    Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar

    [52]

    Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar

    [53]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [54]

    Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar

    [55]

    Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar

    [57]

    Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [58]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [59]

    杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar

    Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar

    [60]

    张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar

    Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar

    [61]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [62]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [63]

    Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar

    [64]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [65]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [66]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [67]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar

    [68]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [69]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [70]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [71]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [72]

    Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar

    [73]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [74]

    Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar

  • 图 1  Zr2C(NH)2结构的3种构型 (a) M-top构型; (b) X-top构型; (c) Mixed构型

    Fig. 1.  Three types of Zr2C(NH)2 structure: (a) M-top style; (b) X-top style; (c) Mixed style.

    图 2  M2CT2结构的3种构型(M-top构型, X-top构型, Mixed构型)相比于无悬挂键的M2C结构的相对能量差(ΔE/eV), 其中颜色越蓝, 表示相对能量越低, 对应的构型则越稳定

    Fig. 2.  Relative energy difference (ΔE/eV) for the M-top, X-top and mixed configurations of M2CT2 structures with respect to those of M2C structures. The blue color represents the lowest energy and stable configuration.

    图 3  M2C/M2C-Cs3Sb结构的功函数(W, eV)随M原子序数变化图

    Fig. 3.  Work-function (W, eV) of M2C and M2C-Cs3Sb structure vary with metal elements.

    图 4  Mixed型异质结示意图 (a)和(b) Model-1型和Model-2型Sc2CO2-Cs3Sb异质结; (c), (d)和(e), (f)则分别对应Ta2CS2-Cs3Sb和Zr2C(OH)2-Cs3Sb异质结. 红球, O原子; 灰球, C原子; 深紫色球, Cs原子; 浅紫色球, Sb原子; 绿球, Zr原子; 蓝球, Ta原子; 黄球, S原子; 白球, Sc/H原子; (a)中的A, B分别表示Cs3Sb基底中的Cs, Sb原子

    Fig. 4.  Mixed style of heterostructures, subgraph (a) and (b) refer to the Model-1 and Model-2 style of Sc2CO2-Cs3Sb structure, subgraph (c) and (d) to Ta2CS2-Cs3Sb, subgraph (e) and (f) to Zr2C(OH)2-Cs3Sb. The red, gray, dark purple, light purple, green, blue, yellow and white balls represent O, C, Cs, Sb, Zr, Ta, S and Sc/H atoms respectively. A and B in panel (a) refer to the Cs and Sb atoms respectively, in the Cs3Sb basement.

    图 5  (a) M2CT2-Cs3Sb结构的功函数(W, eV)随过渡金属M和悬挂键T以及(b) M2CT2结构的亲和势(EA, eV)变化图

    Fig. 5.  (a) Changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of elements M and dangling bonds T (b) changes of work-function (W, eV) of M2CT2-Cs3Sb structure as a function of electron affinity (EA, eV) of M2CT2.

    图 6  V2CT2-Cs3Sb (T = —F/—OH)异质结的差分电荷密度图(a), (c)和能级矫正示意图(b), (d)

    Fig. 6.  Charge density difference (a), (c) and band alignment (b), (d) of V2CT2-Cs3Sb (T = —F/—OH) structures

    表 1  Sc2CO2-Cs3Sb/Ta2CS2-Cs3Sb/Zr2C(OH)2-Cs3Sb的Model-1和Model-2型异质结的功函数和层间结合能

    Table 1.  Work-function and binding energy of Sc2CO2-Cs3Sb, Zr2C(OH)2-Cs3Sb and Ta2CS2-Cs3Sb in Model-1 and Model-2

    M2CT2 M2CT2-Cs3Sb in Model-1 M2CT2-Cs3Sb in Model-2
    W0/eVW1/eVW1/eVEb1/(meV·Å–2)W2/eVW2/eVEb2/(meV·Å–2)
    Sc2CO25.484 3.547–1.937–4.161 2.096–3.388–5.705
    Ta2CS25.3834.490–0.893–6.1225.076–0.307–5.364
    Zr2C(OH)21.7012.0640.363–1.7012.0780.377–1.778
    下载: 导出CSV

    表 2  带—OH和—OCH3悬挂键的M2CT2和M2CT2-Cs3Sb结构的功函数和层间结合能

    Table 2.  Work-function and binding energy of M2CT2 and M2CT2-Cs3Sb structures with dangling bonds of —OH and —OCH3

    —OH M2C(OH)2-Cs3Sb —OCH3 M2C(OCH3)2-Cs3Sb
    W0/eVW1/eVW1/eVEb1/(meV·Å–2)W0/eVW2/eVW2/eVEb2/(meV·Å–2)
    Sc2CT21.5491.9690.05–2.036 2.8692.0250.106–2.101
    Ti2CT21.6421.897–0.022–2.2351.5711.877–0.042–1.678
    V2CT21.7431.602–0.317–2.0651.881.9650.046–1.658
    Cr2CT21.4411.813–0.106–1.8482.0881.896–0.023–2.418
    Y2CT21.3482.0960.177–3.7142.4042.1180.199–1.696
    Zr2CT21.7002.0470.128–1.7831.2672.0030.084–1.300
    Nb2CT22.0122.1260.207–2.9411.0901.904–0.015–1.265
    Mo2CT22.1531.9740.055–1.9341.6101.9610.042–2.602
    Hf2CT22.0182.3760.457–3.4411.5821.9640.045–1.219
    Ta2CT22.5112.4920.573–2.4971.3751.9520.033–1.359
    W2CT22.9622.5990.680–0.6002.7321.9460.027–1.456
    下载: 导出CSV

    表 3  V2CT2的亲和势、V2CT2-Cs3Sb结构的功函数和结合能

    Table 3.  Electron affinity of V2CT2, work-function and binding energy of V2CT2-Cs3Sb

    V2CT2 V2CT2-Cs3Sb
    EA/eVW/eVW/eVEb/(meV·Å–2)
    V2C4.6374.5252.606–5.846
    V2CF25.5425.3733.454–7.515
    V2CO26.7876.4414.522–12.23
    V2C(OH)21.7431.602–0.317–2.065
    V2CS24.4764.6382.719–5.140
    V2CCl25.5515.0853.166–7.342
    V2C(OCH3)21.881.9650.046–1.659
    V2C(NH)22.6292.5780.659–3.062
    下载: 导出CSV
  • [1]

    Gaffney K J, Chapman H N 2007 Science 316 1444Google Scholar

    [2]

    Bilderback D H, Brock J D, Dale D S, Finkelstein K D, Pfeifer M A, Gruner S M 2010 New J. Phys. 12 035011Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R J D 2003 Science 302 1382Google Scholar

    [4]

    Li R K, Musumeci P 2014 Phys. Rev. Appl. 2 024001Google Scholar

    [5]

    Dandey V P, Budell W C, Wei H, Bobe D, Maruthi K, Kopylov M, Eng E T, Kahn P A, Hinshaw J E, Kundu N, Nimigean C M, Fan C, Sukomon N, Darst S A, Saecker R M, Chen J, Malone B, Potter C S, Carragher B 2020 Nat. Methods 17 897Google Scholar

    [6]

    Fan X, Cao D, Kong L, Zhang X 2020 Nat. Commun. 11 3618Google Scholar

    [7]

    Michelato P 1997 Nucl. Instrum. Meth. A 393 455Google Scholar

    [8]

    Musumeci P, Giner Navarro J, Rosenzweig J B, Cultrera L, Bazarov I, Maxson J, Karkare S, Padmore H 2018 Nucl. Instrum. Meth. A 907 209Google Scholar

    [9]

    Bhide G K, Ghosh C 1977 Physics of Thin Films (Vol. 59) (Amsterdam: Elsevier) pp123−142

    [10]

    Cultrera L, Bazarov I, Bartnik A, Dunham B, Karkare S, Merluzzi R, Nichols M 2011 Appl. Phys. Lett. 99 152110Google Scholar

    [11]

    Murtaza G, Ullah M, Ullah N, Rani M, Muzammil M, Khenata R, Ramay S M, Khan U 2016 Bull. Mater. Sci. 39 1581Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Meth. A 622 685Google Scholar

    [13]

    Wang G, Pandey R, Moody N A, Batista E R 2017 J. Phys. Chem. C 121 8399Google Scholar

    [14]

    Decker R W 1969 Advances in Electronics and Electron Physics (Vol. 28) (Amsterdam: Elsevier) pp357–365

    [15]

    Sommer A H 1973 Appl. Optics 12 90Google Scholar

    [16]

    Akram M, Bashir S, Jalil S A, ElKabbash M, Aumayr F, Ajami A, Husinsky W, Mahmood K, Rafique M S, Guo C 2019 Opt. Mater. Express 9 3183Google Scholar

    [17]

    Peng X, Wang Z, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S, Zou J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [18]

    Buzulutskov A, Breskin A, Chechik R, Prager M, Shefer E 1997 Nucl. Instrum. Meth. A 387 176Google Scholar

    [19]

    Wang G, Yang P, Moody N A, Batista E R 2018 NPJ 2 D Mater. Appl. 2 17Google Scholar

    [20]

    Buzulutskov A, Shefer E, Breskin A, Chechik R, Prager M 1997 Nucl. Instrum. Meth. A 400 173Google Scholar

    [21]

    Kimoto T, Arai Y, Ren X 2013 Appl. Surf. Sci. 284 657Google Scholar

    [22]

    Kimoto T, Arai Y, Nagayama K 2017 Appl. Surf. Sci. 393 474Google Scholar

    [23]

    Liu F, Moody N A, Jensen K L, Pavlenko V, Narvaez Villarrubia C W, Mohite A D, Gupta G 2017 Appl. Phys. Lett. 110 041607Google Scholar

    [24]

    Yamaguchi H, Liu F, DeFazio J, Narvaez Villarrubia C W, Finkenstadt D, Shabaev A, Jensen K L, Pavlenko V, Mehl M 2017 NPJ 2D Mater. Appl. 1 12

    [25]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Narvaez Villarrubia C W, Xie J, Sinsheimer J, Strom D, Pavlenko V, Jensen K L, Smedley J, Mohite A D, Moody N A 2018 Adv. Mater. Interfaces 5 1800249Google Scholar

    [26]

    Yamaguchi H, Liu F, DeFazio J, Gaowei M, Guo L, Alexander A, Yoon S I, Hyun C, Critchley M, Sinsheimer J, Pavlenko V, Strom D, Jensen K L, Finkenstadt D, Shin H S, Yamamoto M, Smedley J, Moody N A 2019 Phys. Status Solidi A. 216 1900501Google Scholar

    [27]

    Guo L, Yamaguchi H, Yamamoto M, Matsui F, Wang G, Liu F, Yang P, Batista E R, Moody N A, Takashima Y, Katoh M 2020 Appl. Phys. Lett. 116 251903Google Scholar

    [28]

    Liu F, Sidhik S, Hoffbauer M A, Lewis S, Neukirch A J, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis M G, Crochet J J, Moody N A, Blancon J C, Mohite A D 2021 Nat. Commun. 12 673Google Scholar

    [29]

    Hans K 2017 Ph. D. Dissertation (Beilin: Mathematical Science Faculty, Institute of Physics, Humboldt University, HZB bERlinPro)

    [30]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen AC, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [31]

    Wang G, Yang P, Batista E R 2020 Phys. Rev. Mater. 4 024001Google Scholar

    [32]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [33]

    Bai L, Zhao Q, Shen J, Yang Y, Qi D, Qi Y, Yuan Q, Zhong C, Sun Z, Sun H 2020 J. Phys. Chem. C 124 26396Google Scholar

    [34]

    Champagne A, Charlier J C 2020 J. Phys. Mater. 3 032006Google Scholar

    [35]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [36]

    Shukla V 2020 Mater. Adv. 1 3104Google Scholar

    [37]

    Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H, Prasad P N 2020 Phys. Rep. 848 1Google Scholar

    [38]

    Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R 2018 TrAC- Trends Anal. Chem. 105 424Google Scholar

    [39]

    陈义毫, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童袆, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [40]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [41]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [42]

    Khazaei M, Ranjbar A, Esfarjani K, Bogdanovski D, Dronskowski R, Yunoki S 2018 Phys. Chem. Chem. Phys. 20 8579Google Scholar

    [43]

    Verger L, Xu C, Natu V, Cheng H M, Ren W, Barsoum M W 2019 Curr. Opin. Solid St. M 23 149Google Scholar

    [44]

    Lee E, Kim D J 2020 J. Electrochem. Soc. 167 037515Google Scholar

    [45]

    Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, Jouffret L, Barbier M, Wilhelm F, Tao Q, Lu J, Rosen J, Barsoum M W, Charlier J C 2019 Phys. Rev. Mater. 3 053609Google Scholar

    [46]

    Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, Ryelandt S, Pardoen T, Hautier G, Barsoum M W, Charlier J C 2020 Phys. Rev. Mater. 4 013604Google Scholar

    [47]

    Wang J, Ye T N, Gong Y, Wu J, Miao N, Tada T, Hosono H 2019 Nat. Commun. 10 2284Google Scholar

    [48]

    Miao N, Wang J, Gong Y, Wu J, Niu H, Wang S, Li K, Oganov A R, Tada T, Hosono H 2020 Chem. Mater. 32 6947Google Scholar

    [49]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [50]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [51]

    Yang J, Naguib M, Ghidiu M, Pan L M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W 2016 J. Am. Ceram. Soc. 99 660Google Scholar

    [52]

    Urbankowski P, AnasoriB, Makaryan T, Er D, Kota S, Walsh P L, Zhao M, Shenoy V B, Barsoum M W, Gogotsi Y 2016 Nanoscale 8 11385Google Scholar

    [53]

    Soundiraraju B, George B K 2017 ACS Nano 11 8892Google Scholar

    [54]

    Zhou J, Gao S, Guo Z, Sun Z 2017 Ceram. Int. 43 11450Google Scholar

    [55]

    Pang S Y, WongY T, Yuan S, Liu Y, Tsang M-K, Yang Z, Huang H, Wong W T, Hao J 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D 2018 Angew. Chem. Int. Ed. 57 6115Google Scholar

    [57]

    Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S, Chai Z, Huang Z, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [58]

    Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [59]

    杨建辉, 张绍政, 计嘉琳, 韦世豪 2015 物理化学学报 31 369Google Scholar

    Yang J H, Zhang S Z, Ji J L, Wei S H 2015 Acta Phys-Chim. Sin. 31 369Google Scholar

    [60]

    张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪 2017 物理化学学报 33 2022Google Scholar

    Zhang S Z, Liu J, Xie Y, Lu Y J, Li L, Lv L, Yang J H, Wei S H 2017 Acta Phys-Chim. Sin. 33 2022Google Scholar

    [61]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [62]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [63]

    Zhang L, Tang C, Zhang C, Du A 2020 Nanoscale 12 21291Google Scholar

    [64]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [65]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [66]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [67]

    Blöchl P E 1994 Phys. Rev. B:Condens. Matter Mater. Phys 50 17953Google Scholar

    [68]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [69]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [70]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [71]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [72]

    Bengtsson L 1999 Phys. Rev. B: Condens. Matter Mater. Phys. 59 12301Google Scholar

    [73]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [74]

    Xin Y, Yu Y X 2017 Mater. Design 130 512Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [4] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [5] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [6] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [9] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [10] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [11] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [12] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [13] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [14] 侯滨朋, 淦作亮, 雷雪玲, 钟淑英, 徐波, 欧阳楚英. 第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究. 物理学报, 2019, 68(12): 128801. doi: 10.7498/aps.68.20190181
    [15] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [16] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [17] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [18] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 物理学报, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [19] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [20] 张辉, 张国英, 肖明珠, 路广霞, 朱圣龙, 张轲. 金属元素替代对Li4BN3H10储氢材料释氢影响机理的第一性原理研究. 物理学报, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
计量
  • 文章访问数:  6358
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-06-15
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回