-
由单层过渡金属硫族化合物构成的二维平面异质结在低功耗、高性能和柔性电子器件方面具有重要应用潜力,其界面局域原子结构和缺陷决定电、磁、光、催化和拓扑量子性质,但迄今为止尚缺乏界面原子结构的精确表征。本研究利用球差校正电镜及分区探头成像数据,通过自行编写积分相位差分衬度(Integrated Differential Phase Contrast, iDPC)算法程序,对WS2-MoSe2单层异质结界面进行了原子结构表征,同时成像了W、Se、Mo、S四种原子序数差异较大的原子,确定了异质结界面上的原子位置,发现了几种常见的界面原子构型。本研究结果为单层过渡金属硫族化合物平面异质结研究提供了精确表征方法,对单原子水平界面构效关系研究具有重要意义。
-
关键词:
- 积分差分相位衬度成像 /
- 二维材料 /
- 异质结 /
- 界面原子结构
Two-dimensional planar heterojunctions composed of single-layer transition metal dichalcogenides have great potential for the fabrication of low-power, high-performance, and flexible optoelectronic devices. The localized atomic structure and crystal defects at interface govern the electronic, magnetic, optical, catalytic, and topological quantum properties. However, precise characterization of interface atomic structure is still a challenge, so far. To determine the accurate atomic position, a spherical aberration-corrected electron microscope with segmented detector is employed, and the calculation by Integrated Differential Phase Contrast (iDPC) imaging algorithm has been performed. By using iDPC method, we have carried out characterization for the atomic structure of WS2-MoSe2 monolayer heterojunction interface, while imaging the W, Se, Mo, and S atoms simultaneously. Statistics show that the distribution of angle between the lattices on both sides of the WS2-MoSe2 planar heterojunction is around 29° and 35°. Additionally, we found that the lattice near the boundary experiences strains of approximately 4‰ and 2% in the two lattice vector directions, with significant distortion occurring only at the interface. In this work, several typical atomic configurations, including merge type, quadrilateral type, and pentagonal type, are found. The interface atomic configurations could help to release stress at the lateral interface. This study provides a useful method for the accurate structural characterization for planar heterojunctions of monolayer transition metal dichalcogenide. It is of great significance for an in-depth investigation of structure-property relationships at single-atom resolution in various interface structures.-
Keywords:
- iDPC /
- 2D Material /
- Heterojunction /
- Interface atomic structure
-
[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013Nature chemistry 5 263
[2] Lim J Y, Kim M, Jeong Y, Ko K R, Yu S, Shin H G, Moon J Y, Choi Y J, Yi Y, Kim T, others 2018npj 2D Materials and Applications 2 37
[3] Guo L J, Hu J S, Ma X G, X J 2019Acta Phys. Sin. 68 097101(in Chinese)[郭丽娟, 胡吉松, 马新国, 项炬2019物理学报68 097101]
[4] Choi M, Park Y J, Sharma B K, Bae S R, Kim S Y, Ahn J H 2018Science Advances 4 essa8721
[5] Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P, others 2016ACS nano 10 3852
[6] Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q 2021Acta Phys. Sin. 70 027901(in Chinese) [姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻2021物理学报70 027901]
[7] Wang R, Ding J W, Sun F, Zhao J M, Qiu X H 2024Chin. Phys. Lett 41057801
[8] Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015Nature Communications 6 7311
[9] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015Nature 526 91
[10] Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015Nature Materials 14 301
[11] Xu W, Liu W, Schmidt J F, Zhao W, Lu X, Raab T, Diederichs C, Gao W, Seletskiy D V, Xiong Q 2017Nature 541 62
[12] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X 2013Nature Nanotech 8 952
[13] Pospischil A, Furchi M M, Mueller T 2014Nature Nanotech 9 257
[14] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014Nature Nanotech 9 676
[15] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015Science 349 524
[16] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019Nature 567 66
[17] Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018Nature 553 63
[18] Rose H 1974Optik 39 416
[19] Dekkers N H, De Lang H 1974Optik 41 452
[20] Rose H 1976Ultramicroscopy 2 251
[21] Shibata N, Kohno Y, Findlay S D, Sawada H, Kondo Y, Ikuhara Y 2010Journal of Electron Microscopy 59 473
[22] Shibata N, Findlay S D, Kohno Y, Sawada H, Kondo Y, Ikuhara Y 2012Nature Physics 8 611
[23] Lazić I, Bosch E G T, Lazar S 2016Ultramicroscopy 160 265
[24] Yücelen E, Lazić I, Bosch E G T 2018Scientific Reports 8 2676
[25] de Graaf S, Kooi B J 20212D Materials 9 015009
[26] Sun H, Yang Q, Wang J, Ding M, Cheng M, Liao L, Cai C, Chen Z, Huang X, Wang Z, Xu Z, Wang W, Liu K, Liu L, Bai X, Chen J, Meng S, Wang L 2024Nature Communications 15 9476
[27] Müller K, Krause F F, Béché A, Schowalter M, Galioit V, Löffler S, Verbeeck J, Zweck J, Schattschneider P, Rosenauer A 2014Nature Communications 5 5653
计量
- 文章访问数: 23
- PDF下载量: 2
- 被引次数: 0