搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WS2-MoSe2二维平面异质结界面原子结构的积分相位差分衬度成像

蔡尘 孙华聪 李佳蔚 张广宇 白雪冬

引用本文:
Citation:

WS2-MoSe2二维平面异质结界面原子结构的积分相位差分衬度成像

蔡尘, 孙华聪, 李佳蔚, 张广宇, 白雪冬
cstr: 32037.14.aps.74.20250441

Atomic structure imaging of WS2-MoSe2 two-dimensional plane heterojunction interface using integrated differential phase contrast method

CAI Chen, SUN Huacong, LI Jiawei, ZHANG Guangyu, BAI Xuedong
cstr: 32037.14.aps.74.20250441
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 由单层过渡金属硫族化合物构成的二维平面异质结在低功耗、高性能和柔性电子器件方面具有重要应用潜力, 其界面局域原子结构和缺陷决定电、磁、光、催化和拓扑量子性质, 但迄今为止尚缺乏界面原子结构的精确表征. 本研究利用球差校正电镜及分区探头成像数据, 通过自行编写积分差分相位衬度(integrated differential phase contrast, iDPC)算法程序, 对WS2-MoSe2单层异质结界面进行了原子结构表征, 同时成像了W, Se, Mo, S四种原子序数差异较大的原子, 确定了异质结界面上的原子位置, 发现了几种常见的界面原子构型. 本研究结果为单层过渡金属硫族化合物平面异质结研究提供了精确表征方法, 对单原子水平界面构效关系研究具有重要意义.
    Two-dimensional planar heterojunctions composed of single-layer transition metal dichalcogenides have great potential applications in low-power, high-performance, and flexible optoelectronic devices. The localized atomic structure and crystal defects at interface govern the electronic, magnetic, optical, catalytic, and topological quantum properties. However, accurate characterization of interface atomic structure is still a challenge, so far. To determine the accurate atomic position, a spherical aberration-corrected electron microscope with segmented detector is employed, and the calculation is performed by integrated differential phase contrast (iDPC) imaging algorithm. By using the iDPC method, the atomic structure of WS2-MoSe2 monolayer heterojunction interface is characterized, and the W, Se, Mo, and S atoms are imaged simultaneously. Statistics show that the angles between the lattices on both sides of the WS2-MoSe2 planar heterojunction are distributed around 29° and 35°. Additionally, it is found that the lattice near the boundary experiences the strains of approximately 4‰ and 2% in the two lattice vector directions, with significant distortion occurring only at the interface. In this work, several typical atomic configurations, including merge type, quadrilateral type, and pentagonal type are found. The interface atomic configuration can help to release stress at the lateral interface. This study provides a useful method for accurately characterizing the structures for planar heterojunctions of monolayer transition metal dichalcogenide. It is of great significance for in-depth research on the structure-property relationship at single-atom resolution in various interface structures.
      通信作者: 白雪冬, xdbai@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12334001)和国家重点基础研究发展计划(批准号: 2024YFA1208201, 2021YFA1400204)资助的课题.
      Corresponding author: BAI Xuedong, xdbai@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12334001) and the National Basic Research Program of China (Grant Nos. 2024YFA1208201, 2021YFA1400204).
    [1]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [2]

    Lim J Y, Kim M, Jeong Y, Ko K R, Yu S, Shin H G, Moon J Y, Choi Y J, Yi Y, Kim T, others 2018 npj 2D Mater. Appl. 2 37

    [3]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [4]

    Choi M, Park Y J, Sharma B K, Bae S R, Kim S Y, Ahn J H 2018 Sci. Adv. 4 essa8721Google Scholar

    [5]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P, others 2016 ACS Nano 10 3852Google Scholar

    [6]

    姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻 2021 物理学报 70 027901Google Scholar

    Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q 2021 Acta Phys. Sin. 70 027901Google Scholar

    [7]

    Wang R, Ding J W, Sun F, Zhao J M, Qiu X H 2024 Chin. Phys. Lett. 41 057801Google Scholar

    [8]

    Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311Google Scholar

    [9]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [10]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [11]

    Xu W, Liu W, Schmidt J F, Zhao W, Lu X, Raab T, Diederichs C, Gao W, Seletskiy D V, Xiong Q 2017 Nature 541 62Google Scholar

    [12]

    Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X 2013 Nat. Nanotechnol. 8 952Google Scholar

    [13]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [14]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [15]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [16]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [17]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63Google Scholar

    [18]

    Rose H 1974 Optik 39 416

    [19]

    Dekkers N H, De Lang H 1974 Optik 41 452

    [20]

    Rose H 1976 Ultramicroscopy 2 251Google Scholar

    [21]

    Shibata N, Kohno Y, Findlay S D, Sawada H, Kondo Y, Ikuhara Y 2010 J. Electron Microsc. 59 473Google Scholar

    [22]

    Shibata N, Findlay S D, Kohno Y, Sawada H, Kondo Y, Ikuhara Y 2012 Nat. Phys. 8 611Google Scholar

    [23]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [24]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [25]

    de Graaf S, Kooi B J 2021 2D Mater. 9 015009

    [26]

    Sun H, Yang Q, Wang J, Ding M, Cheng M, Liao L, Cai C, Chen Z, Huang X, Wang Z, Xu Z, Wang W, Liu K, Liu L, Bai X, Chen J, Meng S, Wang L 2024 Nat. Commun. 15 9476Google Scholar

    [27]

    Müller K, Krause F F, Béché A, Schowalter M, Galioit V, Löffler S, Verbeeck J, Zweck J, Schattschneider P, Rosenauer A 2014 Nat. Commun. 5 5653Google Scholar

  • 图 1  DPC-STEM示意图 (a) 电子束受样品内电场作用发生偏转; (b) 四分区DPC探头

    Fig. 1.  Schematic diagram of DPC-STEM: (a) Electron beam deflected by electric field in specimen; (b) 4 segment DPC detector.

    图 2  分区探头示意图以及iDPC成像算法简要示意 (a) 八分区探头的示意图; (b) 每一个分区在STEM扫描模式下得到的图像信号; (c) 分区信号经由成像算法计算得到样品iDPC图像

    Fig. 2.  Schematic diagram of the segmented probe and a brief illustration of the iDPC imaging algorithm: (a) Schematic diagram of the eight-segment probe; (b) signals obtained from each segment in STEM scanning mode; (c) the segmented signals processed through the imaging algorithm to obtain the sample's iDPC image.

    图 3  平面异质结的电镜成像与原子模型 (a) WS2-MoSe2的低倍电镜像; (b) 平面异质结的HAADF-STEM像; (c) WS2区域的放大图(图(b)中红框部分); (d) 放大区域的DPC图像; (e) 放大区域的iDPC信号; (f) 放大区域对应的原子模型(红色标记: W原子, 蓝色标记: S原子)

    Fig. 3.  Electron microscopy imaging and atomic model of the planar heterojunction: (a) Low magnification STEM image of WS2-MoSe2; (b) HAADF-STEM image of the planar heterojunction; (c) magnified display of the WS2 region (red box in Figure (b)); (d) DPC image of the magnified region, scale bar: 3 Å; (e) iDPC signal of the magnified region; (f) corresponding atomic model of the magnified region (red: W atoms, blue: S atoms).

    图 4  HAADF与iDPC成像的对比 (a) WS2区域的HAADF图像以及框选区域的线扫描强度分布, 线扫描横坐标单位为pixel; (b)同一区域的iDPC图像以及同区域的线扫描强度分布; (c)平面异质结界面处的HAADF图像与原子模型; (d) 同一区域的iDPC图像与原子模型

    Fig. 4.  Comparison of HAADF and iDPC imaging: (a) HAADF image of the WS2 region and Line profile of the selected area, line profile exhibit in pixels; (b) iDPC image of the same region and the line profile of the same area; (c) HAADF image at the interface of the planar heterojunction and the corresponding atomic model; (d) iDPC image and atomic model at the same region.

    图 5  平面异质结界面典型原子构型 (a) 平面异质结WS2的界面过渡; (b) 融合型界面; (c) 四边形过渡构型; (d) 五边形过渡构型; (e) 四边形、五边形界面构型示意图

    Fig. 5.  Typical configurations of the planar heterojunction interface: (a) Illustration of the transition at the WS2 interface of the planar heterojunction; (b) merged interface; (c) quadrilateral transition configuration; (d) pentagon transition configuration; (e) individual display of quadrilateral and pentagon interface configurations.

  • [1]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [2]

    Lim J Y, Kim M, Jeong Y, Ko K R, Yu S, Shin H G, Moon J Y, Choi Y J, Yi Y, Kim T, others 2018 npj 2D Mater. Appl. 2 37

    [3]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [4]

    Choi M, Park Y J, Sharma B K, Bae S R, Kim S Y, Ahn J H 2018 Sci. Adv. 4 essa8721Google Scholar

    [5]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P, others 2016 ACS Nano 10 3852Google Scholar

    [6]

    姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻 2021 物理学报 70 027901Google Scholar

    Yao W Q, Sun J Z, Chen J Y, Guo Y L, Wu B, Liu Y Q 2021 Acta Phys. Sin. 70 027901Google Scholar

    [7]

    Wang R, Ding J W, Sun F, Zhao J M, Qiu X H 2024 Chin. Phys. Lett. 41 057801Google Scholar

    [8]

    Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311Google Scholar

    [9]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [10]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [11]

    Xu W, Liu W, Schmidt J F, Zhao W, Lu X, Raab T, Diederichs C, Gao W, Seletskiy D V, Xiong Q 2017 Nature 541 62Google Scholar

    [12]

    Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X 2013 Nat. Nanotechnol. 8 952Google Scholar

    [13]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [14]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [15]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [16]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [17]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63Google Scholar

    [18]

    Rose H 1974 Optik 39 416

    [19]

    Dekkers N H, De Lang H 1974 Optik 41 452

    [20]

    Rose H 1976 Ultramicroscopy 2 251Google Scholar

    [21]

    Shibata N, Kohno Y, Findlay S D, Sawada H, Kondo Y, Ikuhara Y 2010 J. Electron Microsc. 59 473Google Scholar

    [22]

    Shibata N, Findlay S D, Kohno Y, Sawada H, Kondo Y, Ikuhara Y 2012 Nat. Phys. 8 611Google Scholar

    [23]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [24]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [25]

    de Graaf S, Kooi B J 2021 2D Mater. 9 015009

    [26]

    Sun H, Yang Q, Wang J, Ding M, Cheng M, Liao L, Cai C, Chen Z, Huang X, Wang Z, Xu Z, Wang W, Liu K, Liu L, Bai X, Chen J, Meng S, Wang L 2024 Nat. Commun. 15 9476Google Scholar

    [27]

    Müller K, Krause F F, Béché A, Schowalter M, Galioit V, Löffler S, Verbeeck J, Zweck J, Schattschneider P, Rosenauer A 2014 Nat. Commun. 5 5653Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [4] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [5] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [9] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [10] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [11] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [12] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [13] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [14] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [15] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [16] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [17] 程立锋, 任承, 王萍, 冯帅. 基于异质结界面优化的光子晶体二极管单向传输特性研究. 物理学报, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [18] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [19] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [20] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
计量
  • 文章访问数:  430
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-06
  • 修回日期:  2025-05-01
  • 上网日期:  2025-05-21
  • 刊出日期:  2025-07-20

/

返回文章
返回