搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱状蜂窝结构的单层二维材料研究进展

孟雨欣 赵漪凡 李绍春

引用本文:
Citation:

褶皱状蜂窝结构的单层二维材料研究进展

孟雨欣, 赵漪凡, 李绍春

Research progress of puckered honeycomb monolayers

Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun
PDF
HTML
导出引用
  • 以石墨烯为代表的二维材料具有新颖的物理特性和潜在的应用前景. 但石墨烯的零带隙限制了它在半导体器件中的应用, 寻找新的半导体型替代材料成为当前的一个研究热点. 作为黑磷的单层, 磷烯具有褶皱状蜂窝结构. 它具有可调直接带隙、高载流子迁移率和面内各向异性等独特的性质, 引起了人们的广泛关注. 磷烯的发现开辟了Ⅴ族二维单层材料的研究领域. 本文首先着重介绍具有黑磷结构的五种单元素二维材料(氮、磷、砷、锑和铋)的结构、合成和物理性质. 其次, 讨论了一些类黑磷结构的二元二维材料, 包括Ⅳ-VI族化合物、V-V族化合物. 这些材料具有独特的晶体对称性, 通过改变结构以及维度可以实现对性质的调控. 最后指出了一些当前需要解决的问题, 并对这些二维半导体材料未来可能的应用前景进行了展望.
    Graphene, as the representative of two-dimensional materials, has varous novel physical properties and potential applications. The intrinsic zero band gap of graphene limits its application in semiconductor devices, and thus the search for new semiconducting alternative materials has become a current research hotspot. Phosphorene is the monolayer of black phosphorus and has a puckered honeycomb structure. Its advanced properties, such as adjustable direct band gap, high carrier mobility and in-plane anisotropy and so on, have recently aroused great research interest, thus opening up the research field of puckered honeycomb monolayers in group V elements. In this article, we first focus on the structure, synthesis and physical properties of five single-element two-dimensional materials (nitrogen, phosphorus, arsenic, antimony and bismuth) each with puckered honeycomb structure. Second, some binary two-dimensional materials with puckered honeycomb structure are discussed, including IV-VI and V-V compounds. These materials have their own unique crystal symmetry, and the properties can be controlled by changing their structures and dimensions. Finally, we also make a summary on some current challenges that need to be solved, and the possible future applications of these two-dimensional materials are also presented.
      通信作者: 李绍春, scli@nju.edu.cn
      作者简介:
      李绍春, 南京大学物理学院教授. 1999年于北京大学物理系获得学士学位, 2004年于中国科学院物理研究所获得博士学位. 先后在美国宾州州立大学、德克萨斯大学奥斯汀分校/美国太平洋西北国家实验室、杜兰大学和哈佛大学做博士后和研究教授. 2012年入职南京大学任教授. 主要研究方向为利用扫描隧道显微镜(STM)和分子束外延(MBE)技术研究原子尺度下的表面物理和化学. 近年来的研究兴趣主要为低维量子材料, 包括利用范德瓦耳斯外延生长新奇的二维材料体系, 并在实验上高精度表征其电子结构, 力求寻找低维体系及其异质结构中的奇异物理性质
    • 基金项目: 国家自然科学基金(批准号: 11774149, 11790311)资助的课题
      Corresponding author: Li Shao-Chun, scli@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774149, 11790311)
    [1]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [3]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [4]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [5]

    Kou J, Nguyen E P, Merkoci A, Guo Z Z 2020 2D Mater. 7 032001

    [6]

    Epstein I, Chaves A J, Rhodes D A, Frank B, Watanabe K, Taniguchi T, Giessen H, Hone J C, Peres N M R, Koppens F H L 2020 2D Mater. 7 035031

    [7]

    Li L, Ye G, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X, Zhang Y 2014 Nat. Nanotechnol. 10 608

    [8]

    Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717Google Scholar

    [9]

    Niu X, Yi Y, Meng L, Shu H, Pu Y, Li X 2019 J. Phys. Chem. C 123 25775Google Scholar

    [10]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [11]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [12]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [13]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [14]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [15]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [16]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [17]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934Google Scholar

    [18]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [19]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Woomer A H, Farnsworth T W, Hu J, Wells R A, Donley C L, Warren S C 2015 ACS Nano 9 8869Google Scholar

    [22]

    Brent J R, Savjani N, Lewis E A, Haigh S J, Lewis D J, O'Brien P 2014 Chem. Commun. 50 13338Google Scholar

    [23]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [24]

    Island J O, Steele G A, van der Zant H S J, Castellanos-Gomez A 2015 2D Mater. 2 011002Google Scholar

    [25]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [26]

    Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar

    [27]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310Google Scholar

    [28]

    Frost M, Howie R T, Dalladay-Simpson P, Goncharov A F, Gregoryanz E 2016 Phys. Rev. B 93 024113Google Scholar

    [29]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [30]

    Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K, Hemley R J 2004 J. Chem. Phys. 121 11296Google Scholar

    [31]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [32]

    Adeleke A A, Greschner M J, Majumdar A, Wan B, Liu H Y, Li Z P, Gou H Y, Yao Y S 2017 Phys. Rev. B 96 224104Google Scholar

    [33]

    Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar

    [34]

    Mulder A, Michels J P J, Schouten J A 1996 J. Chem. Phys. 105 3235Google Scholar

    [35]

    Gregoryanz E, Goncharov A F, Hemley R J, Mao H K 2001 Phys. Rev. B 64 052103

    [36]

    Eremets M L, Hemley R J, Mao H, Gregoryanz Z 2001 Nature 411 170Google Scholar

    [37]

    Goncharov A F, Gregoryanz E, Mao H, Liu Z, Hemley R J 2000 Phys. Rev. Lett. 85 1262Google Scholar

    [38]

    Eremets M I, Trojan I A, Gavriliuk A G, Medvedev S A 2009 Static Compression of Energetic Materials (Springer Berlin Heidelberg) pp75–97

    [39]

    Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar

    [40]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001Google Scholar

    [41]

    Ji C, Adeleke A A, Yang L, et al. 2020 Sci. Adv. 6 eaba9206Google Scholar

    [42]

    Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar

    [43]

    Kikegawa T, Iwasaki H 1983 Acta Cryst. B 39 158

    [44]

    Ling X, Wang H, Huang S, Xia F, Dresselhaus M S 2015 Proc. Natl. Acad. Sci. U. S. A. 112 4523Google Scholar

    [45]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [46]

    Bridgman P W 1916 J. Am. Chem. Soc. 38 609Google Scholar

    [47]

    Lange S, Schmidt P, Nilges T 2007 Inorg. Chem. 46 4028Google Scholar

    [48]

    Nilges T, Kersting M, Pfeifer T 2008 J. Solid State Chem. 181 1707Google Scholar

    [49]

    Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T 2014 J. Cryst. Growth 405 6Google Scholar

    [50]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 Acs Nano 8 4033Google Scholar

    [51]

    Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C, Zhang Z 2014 Nano Res. 7 853Google Scholar

    [52]

    Zhao W, Xue Z, Wang J, Jiang J, Zhao X, Mu T 2015 ACS Appl. Mater. Interfaces 7 27608Google Scholar

    [53]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [54]

    Hultgren R, Gingrich N S, Warren B E 1935 J. Chem. Phys. 3 351Google Scholar

    [55]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [56]

    Schuller J A, Karaveli S, Schiros T, He K, Yang S, Kymissis I, Shan J, Zia R 2013 Nat. Nanotechnol. 8 271Google Scholar

    [57]

    Moynihan G, Sanvito S, O’Regan D D 2017 2D Mater. 4 045018

    [58]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [59]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [60]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [61]

    Gu C, Zhao S, Zhang J L, Sun S, Yuan K, Hu Z, Han C, Ma Z, Wang L, Huo F, Huang W, Li Z, Chen W 2017 ACS Nano 11 4943Google Scholar

    [62]

    Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z, Wong W K, Han T, Lin J, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768Google Scholar

    [63]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [64]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [65]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [66]

    Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001

    [67]

    Wood J D, Wells S A, Jariwala D, Chen K-S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [68]

    Liu H, Neal A T, Si M W, Du Y C, Ye P D 2014 IEEE Electron Device Lett. 35 795Google Scholar

    [69]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423Google Scholar

    [70]

    Zhang Z Y, Xie J F, Yang D Z, Wang Y H, Si M S, Xue D S 2015 Appl. Phys. Express 8 055201Google Scholar

    [71]

    Zhao A L, Li H, Hu X J, Wang C, Zhang H, Lu J G, Ruan S C, Zeng Y J 2020 J. Phys. D: Appl. Phys. 53 293002Google Scholar

    [72]

    Sun Y J, Wang D, Shuai Z G 2017 J. Phys. Chem. C 121 19080Google Scholar

    [73]

    Zhang H, Ma Y, Chen Z 2015 Nanoscale 7 19152Google Scholar

    [74]

    Chaves A, Mayers M Z, Peeters F M, Reichman D R 2016 Phys. Rev. B 93 115314Google Scholar

    [75]

    Chen Y, Chen C, Kealhofer R, et al. 2018 Adv. Mater. 30 1800754Google Scholar

    [76]

    Kovalska E, Antonatos N, Luxa J, Sofer Z 2020 Inorg. Chem. 59 11259Google Scholar

    [77]

    Wu Z, Hao J 2020 NPJ 2D Mater. Appl. 4 4Google Scholar

    [78]

    Ares P, Palacios J J, Abellan G, Gomez-Herrero J, Zamora F 2018 Adv. Mater. 30 1703771Google Scholar

    [79]

    Zhang P, Liu Z, Duan W, Liu F, Wu J 2012 Phys. Rev. B 85 201410Google Scholar

    [80]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [81]

    Zhao N, Zhu Y F, Jiang Q 2018 Physica E 101 38Google Scholar

    [82]

    Märkl T, Kowalczyk P J, Le Ster M, Mahajan I V, Pirie H, Ahmed Z, Bian G, Wang X, Chiang T C, Brown S A 2017 2D Mater. 5 011002

    [83]

    Shi Z Q, Li H, Yuan Q Q, Song Y H, Lü Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W, Li S C 2019 Adv. Mater. 31 e1806130Google Scholar

    [84]

    Shi Z Q, Li H, Yuan Q Q, Xue C L, Xu Y J, Lü Y Y, Jia Z Y, Chen Y, Zhu W, Li S C 2020 ACS Nano 14 16755Google Scholar

    [85]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lü Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [86]

    Yang Z B, Wu Z H, Lyu Y X, Hao J H 2019 Infomat 1 98Google Scholar

    [87]

    Yang Q Q, Liu R T, Huang C, Huang Y F, Gao L F, Sun B, Huang Z P, Zhang L, Hu C X, Zhang Z Q, Sun C L, Wang Q, Tang Y L, Zhang H L 2018 Nanoscale 10 21106Google Scholar

    [88]

    Li Z J, Qiao H, Guo Z N, Ren X H, Huang Z Y, Qi X, Dhanabalan S C, Ponraj J S, Zhang D, Li J Q, Zhao J L, Zhong J X, Zhang H 2018 Adv. Funct. Mater. 28 1705237Google Scholar

    [89]

    Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D, Jia J F 2017 Nano Lett. 17 3035Google Scholar

    [90]

    Kumar P, Singh J, Pandey A C 2013 RSC Adv. 3 2313Google Scholar

    [91]

    Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S, Sakurai T 2004 Phys. Rev. Lett. 93 105501Google Scholar

    [92]

    Sun J T, Huang H, Wong S L, Gao H J, Feng Y P, Wee A T S 2012 Phys. Rev. Lett. 109 246804Google Scholar

    [93]

    Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H, Wang X S 2015 Nano Lett. 15 80Google Scholar

    [94]

    Kawakami N, Lin C L, Kawahara K, Kawai M, Arafune R, Takagi N 2017 Phys. Rev. B 96 205402Google Scholar

    [95]

    Nagase K, Kokubo I, Yamazaki S, Nakatsuji K, Hirayama H 2018 Phys. Rev. B 97 195418Google Scholar

    [96]

    Gou J, Kong L, He X, Huang Y L, Sun J, Meng S, Wu K, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [97]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [98]

    Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [99]

    Shi G, Kioupakis E 2015 J. Appl. Phys. 117 065103Google Scholar

    [100]

    Zhu H, Sun W, Armiento R, Lazic P, Ceder G 2014 Appl. Phys. Lett. 104 082107Google Scholar

    [101]

    Barraza-Lopez S, Fregoso B M, Villanova J W, Parkin S S P, Chang K 2021 Rev. Mod. Phys. 93 011001Google Scholar

    [102]

    Makinistian L, Albanesi E A 2006 Phys. Rev. B 74 045206Google Scholar

    [103]

    Baumgardner W J, Choi J J, Lim Y F, Hanrath T 2010 J. Am. Chem. Soc. 132 9519Google Scholar

    [104]

    Xu X, Song Q, Wang H, Li P, Zhang K, Wang Y, Yuan K, Yang Z, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 12601Google Scholar

    [105]

    Pejova B, Tanusevski A 2008 J. Phys. Chem. C 112 3525Google Scholar

    [106]

    Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [107]

    Shi G, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [108]

    Hu Z, Ding Y, Hu X, Zhou W, Yu X, Zhang S 2019 Nanotechnology 30 252001Google Scholar

    [109]

    Kamal C, Chakrabarti A, Ezawa M 2016 Phys. Rev. B 93 125428Google Scholar

    [110]

    Gomes L C, Carvalho A 2015 Phys. Rev. B 92 085406Google Scholar

    [111]

    Deb A K, Kumar V 2017 Phys. Status Solidi B 254 1600379Google Scholar

    [112]

    Huang L, Wu F, Li J 2016 J. Chem. Phys. 144 114708Google Scholar

    [113]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [114]

    Ribeiro-Soares J, Almeida R M, Ado L G C, Dresselhaus M S, Jorio A 2015 Phys. Rev. B 91 205421Google Scholar

    [115]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111Google Scholar

    [116]

    Mukherjee B, Cai Y, Tan H R, Feng Y P, Tok E S, Sow C H 2013 ACS Appl. Mater. Interfaces 5 9594Google Scholar

    [117]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [118]

    Wang Z, Wang J, Zang Y, Zhang Q, Shi J-A, Jiang T, Gong Y, Song C L, Ji S H, Wang L L, Gu L, He K, Duan W, Ma X, Chen X, Xue Q K 2015 Adv. Mater. 27 4150Google Scholar

    [119]

    Jiang J Z, Wong C P Y, Zou J, Li S S, Wang Q X, Chen J Y, Qi D Y, Wang H Y, Eda G, Chua D H C, Shi Y M, Zhang W J, Wee A T S 2017 2 D Mater. 4 021026

    [120]

    Ju H, Kim J 2016 ACS Nano 10 5730Google Scholar

    [121]

    Zhao S, Wang H, Zhou Y, Liao L, Jiang Y, Yang X, Chen G, Lin M, Wang Y, Peng H, Liu Z 2015 Nano Res. 8 288Google Scholar

    [122]

    Huang Y J, Li L L, Lin Y H, Nan C W 2017 J. Phys. Chem. C 121 17530Google Scholar

    [123]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [124]

    Chang K, Kaloni T P, Lin H, Bedoya-Pinto A, Pandeya A K, Kostanovskiy I, Zhao K, Zhong Y, Hu X, Xue Q K, Chen X, Ji S H, Barraza-Lopez S, Parkin S S P 2019 Adv. Mater. 31 e1804428Google Scholar

    [125]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [126]

    Xiong F, Zhang X, Lin Z, Chen Y 2018 J. Materiomics 4 139Google Scholar

    [127]

    Barraza-Lopez S, Kaloni T P, Poudel S P, Kumar P 2018 Phys. Rev. B 97 024110Google Scholar

    [128]

    Hanakata P Z, Carvalho A, Campbell D K, Park H S 2016 Phys. Rev. B 94 035304Google Scholar

    [129]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [130]

    Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [131]

    Wang H, Qian X 2017 Nano Lett. 17 5027Google Scholar

    [132]

    Chang K, Miller B J, Yang H, Lin H, Parkin S S P, Barraza-Lopez S, Xue Q K, Chen X, Ji S H 2019 Phys. Rev. Lett. 122 206402Google Scholar

    [133]

    Fei R X, Li W B, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [134]

    Guo R Q, Wang X J, Kuang Y D, Huang B L 2015 Phys. Rev. B 92 115202Google Scholar

    [135]

    Ding G, Gao G, Yao K 2015 Sci. Rep. 5 9567Google Scholar

    [136]

    Shafique A, Shin Y H 2017 Sci. Rep. 7 506Google Scholar

    [137]

    Pandit A, Haleoot R, Hamad B 2021 J. Mater. Sci. 56 10424Google Scholar

    [138]

    Zhang R, Zhou Z, Yao Q, Qi N, Chen Z 2021 Phys. Chem. Chem. Phys. 23 3794Google Scholar

    [139]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [140]

    Kou L Z, Ma Y D, Tan X, Frauenheim T, Du A J, Smith S 2015 J. Phys. Chem. C 119 6918Google Scholar

    [141]

    Zhang Q Y, Schwingenschloegl U 2016 Phys. Rev. B 93 045312Google Scholar

    [142]

    Li S S, Ji W X, Li P, Hu S J, Zhou T, Zhang C W, Yan S S 2017 Sci. Rep. 7 6126Google Scholar

    [143]

    Nie Y, Rahman M, Liu P, Sidike A, Xia Q, Guo G H 2017 Phys. Rev. B 96 075401Google Scholar

    [144]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [145]

    W. Yu, C.Niu, Z. Zhu, X. Wang, W. Zhang 2016 J. Mater. Chem. C 4 8

    [146]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [147]

    Yin H, Gao J, Zheng G P, Wang Y, Ma Y 2017 J. Phys. Chem. C 121 25576Google Scholar

    [148]

    Chen F Y, Xu H X, Wang J Y, Wang Z D, Liu X Q, Lu Y, Wang L 2019 J. Appl. Phys. 125 214303Google Scholar

  • 图 1  (a) 2号晶粒的二维X射线衍射(XRD)图像. 白色方框标志了bp结构氮的衍射点, 数字表示相应的米勒指数[41]; (b) 在140 GPa下, bp-N的实验(黑色)和计算(蓝色)的拉曼光谱与文献[31]报道的LP-N结构的计算拉曼光谱(红色)对比; (c) bp-N层的之字形和扶手椅形排列; (d) bp-N的晶格结构; (e) 两层叠加的bp-N结构[40]

    Fig. 1.  (a) 2D XRD image from grain #2. White boxes mark the diffraction spots of BP-structured nitrogen. Numbers indicate corresponding Miller indices[41]. (b) comparison of the experimental (black) and calculated Raman spectrum of bp-N (blue) at 140 GPa with the Raman spectrum calculated in this work for LP-N with the structure reported in Ref [31] (red); (c) the zigzag and armchair arrangements forming the bp-N layers; (d) the crystal structure of bp-N; (e) two superimposed layers of the bp-N structure[40].

    图 2  (a) 原子力显微镜成像的单层磷晶体测量厚度约为0.85 nm; (b) 在300 nm SiO2/Si衬底上单层磷和块状黑磷样品的光致发光光谱, 在1.45 eV左右表现出明显光致发光信号[50]; (c) 原始多层磷的图像; (d) 经过Ar+离子薄化后的图像[51]; (e) 在0.35 μm2的衬底上制备的二维黑磷薄膜. 插图:薄膜的高度轮廓, 大约为四层厚度(3.4 nm)[53]

    Fig. 2.  (a) Atomic force microscopy image of a single-layer phosphorene crystal with the measured thickness of about 0.85 nm; (b) photoluminescence spectra for single-layer phosphorene and bulk black phosphorus samples on a 300 nm SiO2/Si substrate, showing a pronounced photoluminescence signal around 1.45 eV [50]; (c) optical image of multilayered pristine phosphorene; (d) the same as in Fig. (c) after Ar+ plasma thinning[51]; (e) thin film of 2D black phosphorene on substrates with 0.35 μm2 area. Inset: height profile for thin film showing thickness of approximately four layers (3.4 nm) [53].

    图 3  (a)单层磷烯的俯视图; (b) 单层磷烯的侧视图[59]; (c) 蓝磷的原子模型. 晶胞用黑色菱形标记[61]; (d) 本征单层磷烯的能带结构; (e) 双轴应变5%时磷烯的能带结构; (f) 沿之字形方向施加6%的单轴应变时磷烯的能带结构[59]

    Fig. 3.  (a) Top view of monolayer phosphorene; (b) side views of monolayer[59]; (c) atomic model of blue phosphorus. The unit cell is labeled by the black rhombus[61]; (d) band structures of intrinsic monolayer phosphorene; (e) band structures of phosphorene with a 5% biaxial strain; (f) band structures of phosphorene with a 6% zigzag uniaxial strain[59].

    图 4  (a) 正交晶体As的常规晶体结构; (b)单层砷烯的能带结构. 箭头表示间接带隙; (c) 第一性原理revPBE、杂化密度泛函HSE06计算得到的砷烯带隙随层数变化图[70]

    Fig. 4.  (a) The conventional crystal structure of orthorhombic bulk As; (b) band structures of monolayer arsenene. The arrow shows an indirect bandgap; (c) the band gap of arsenene calculated by first-principle revPBE, hybrid density functional HSE06 calculation with the number of layers[70].

    图 5  (a)机械剥落的b-As的AFM像; (b)具有原子分辨率的b-As的HRTEM图像, 内插图是选区电子衍射图; (c) 沿b-As和其他二维材料的AC和ZZ方向的电导率σ、迁移率μ、热导率κ和有效质量 m*的平面内各向异性的比较; (d) α-As电导的角度相关现象, 表现出沿armchair (AC)方向的优先输运; (e) 纵向电导率σxx 沿armchair(AC)和zigzag(ZZ)方向的磁场相关转换[75]

    Fig. 5.  (a) A b-As flake mechanically exfoliated and imaged with AFM; (b) HRTEM image of b-As with atomic resolution, inset is the indexed SAED pattern; (c) comparison of in-plane anisotropy in electrical conductivity σ, mobility μ, thermal conductivity κ, and effective mass m* along the AC and ZZ directions of b-As and other 2D materials; (d) angle-dependent appearance on electrical conductance of α-arsenene, exhibiting the preferred transportation along arm-chair (AC) direction; (e)Magnetic-field-dependent conversion of longitudinal conductivity σxx along armchair (AC) and zigzag (ZZ) directions [75].

    图 6  在摩尔体积浓度为0.01 mol/L NH4PF6/DMF中电化学剥离的少层砷烯 (a) STEM表征(超声处理过); (b) TEM表征(在花边碳载体上); (c) AFM表征(超声离心过后)[76]

    Fig. 6.  Characterization of the electrochemically exfoliated FA in 0.01 mol/L NH4PF6/DMF by electron microscopy: (a) STEM images of sonicated few-layer arsenene; (b) high-resolution TEM images of the few-layer arsenene on lacey carbon support; (c) AFM images (after washing in the DMF followed by the sonication) [76].

    图 7  (a)在WTe2上制备的单层α-Sb的STM形貌图(120 nm × 120 nm), U = +2 V, It = 100 pA; (b) 在U = –50 mV下采集的原子分辨STM图像(8 nm × 8 nm), It = 100 pA, 插图中黑色和黄色矩形标记R2重建和1 × 1晶格的晶胞; (c) 红色曲线为单层α-Sb的–2.5至+2.5 V的STS谱, 蓝色曲线为–2.0 至+1.0 V的放大部分[83]; (d) 在400 K下沉积在SnSe上的约0.5 ML Sb的STM形貌图(400 nm × 400 nm), 插图显示α-锑烯单层的台阶高度(约6.8 Å), U = +3 V, It = 100 pA; (e) 在α-锑烯单层上的原子分辨图像(19.5 nm × 19.5 nm), U = –880 mV, It = 5 nA, 插图显示了一个单元的放大图像(1.5 nm × 1.5 nm), 黑色矩形为1 × 1元胞 U = –1 V, It = 1 nA; (f) 1 ML锑烯费米能附近dI/dV谱的对数形式(从–0.4到+0.4 V), α-锑烯单层的带隙约为170 meV[85]

    Fig. 7.  (a) The STM topographic image (120 nm × 120 nm) of single layer α-Sb fabricated on WTe2. U = +2 V, It = 100 pA. (b) atomically resolved STM topographic images (8 nm × 8 nm) taken at U = –50 mV. It = 100 pA. In the inset, the black and yellow rectangles mark the unit cells of R2 reconstruction and 1 × 1 lattice; (c) The red curve shows the experimental STS of single layer α-Sb from –2.5 to +2.5 V. The blue curve is the enlarged part from –2.0 to +1.0 V[83]. (d) The STM image (400 nm × 400 nm) of about 0.5 ML Sb deposited on SnSe at 400 K. The inset shows the step height of the α-antimonene monolayer (about 6.8 Å). U = +3 V, It = 100 pA. (e) The atomically resolved STM image (19.5 nm × 19.5 nm) taken on the α-antimonene monolayer. U = –880 mV, It = 5 nA. The inset shows the enlarged image (1.5 nm × 1.5 nm) of panel e. The 1 × 1 unit cell is marked by the black rectangle. U = –1 V, It = 1 nA. (f) The logarithmic format of the dI/dV spectra near the Fermi energy (from –0.4 to +0.4 V) for the 1 ML antimonene films. The band gap of the α-antimonene monolayer isabout 170 meV [85].

    图 8  (a)在约350 K退火10 min后在SnSe上生长的Sb的表面(100 nm × 100 nm). U = +3 V, It = 100 pA. (b) 沿(a)中红色箭头线的扫描线. (c) 半层锑的原子结构. 上图: 大尺度图像(7 nm × 7 nm) U = –1.3 V; It = 1 mA. 下图: 从上图提取的放大图像(3.5 nm × 2.5 nm). 半层(HL) Sb和全层(FL) α-Sb区域被标记在图像上. 为获得更好的视觉效果, 黄点阵列部分叠加在表面原子上. (d) 通过传统的直接过程(灰色路径)和两步过程(红色路径), 从dH结构到皱褶α-Sb层的动力学路径. 插图显示了初始dH结构、中间结构、最终α-Sb结构和过渡态的原子结构. 能量分布图上标记的点表示每个相应原子结构的位置[84]

    Fig. 8.  (a) The as-grown surface (100 nm × 100 nm) after about 0.5 ML Sb is deposited on the SnSe substrate kept at about 350 K. U = +3 V, It = 100 pA. (b) line-scan profile taken along the red arrowed line in Fig. (a). (c) atomically resolved images taken on the as-grown sample. Upper panel: large-scale images (7 nm × 7 nm). U = –1.3 V; It = 1 nA. Lower panel: Zoom-in images (3.5 nm × 2.5 nm) extracted from the upper panel. The regions of the half-layer (half layer,HL) Sb and full layer (full layer,FL) α-Sb are labeled on the images. The yellow dot arrays are partially superimposed on the surface atoms for better vision. (d) kinetic pathways from the dH structure to the puckered α-Sb layer through a traditional direct process (gray path) and a two-step process (red path). Insets show the atomic structures of the initial dH structure, the intermediate structure, the final α-Sb structure, and the transition states. The points marked on the energy profile indicate the position of each corresponding atomic structure[84].

    图 9  (a) 黑磷结构和块体结构下, 4 ML Bi原子的侧视图; (b) 实验测得在石墨烯上生长的Bi(110)面的原子分辨图, 上层叠加的是1 ML Bi(110)面的原子球棍模型; (c) 典型的4 ML Bi(110)纳米带上进行STS谱测量, 绿色虚线表示在EG上的Bi和纳米网(NM)上的Bi之间的边界. 为了清楚起见, STS曲线垂直移动. 特征峰用标号表示[92]; (d) 在HOPG衬底上生长的2 ML和4 ML的Bi(110)岛; (e) 4 ML Bi(110)面的原子分辨图; (f) 沿着图(e)中蓝线和绿线方向的高度起伏图[93]

    Fig. 9.  (a) Side view of 4 ML Bi atoms under black phosphorous structure and bulk structure. (b) atomic resolution image of Bi(110) surface grown on graphene, superimposed on the upper layer. The atomic ball and stick model of 1 ML Bi(110) surface. (c) STS measurements on a typical 4 ML Bi(110) nanoribbon. The boundary between Bi on EG and Bi on the nanomesh (NM) is highlighted by a green dotted curve. The STS curves are shifted vertically for clarity. The characteristic peaks are denoted by labels[92]. (d) Bi(110) islands of 2 ML and 4 ML grown on HOPG substrate. (e) 4 ML Bi(110) surface atom resolution image. (f) Diagram of height fluctuations along the blue and green lines in Fig. (e)[93].

    图 10  (a) Bi(110)岛的STM形貌图, U = –0.5 V, It = 0.3 nA, 岛的高度显示在每个图像的左上角, 每个图像的自相关显示在插图中; (b)波纹的平均峰距; (c)波纹的振幅的高度依赖性[95]

    Fig. 10.  (a) STM topographic images of the corrugation on the Bi(110) islands. U = –0.5 V, It = 0.3 nA. The height of the island is indicated in long-range the top left corner of each image, and the autocorrelation of each image is displayed in the inset. (b) and (c) Height dependences of the average peak distance and amplitude of the corrugation [95].

    图 11  (a) 优化后的单层Ⅳ族单硫族化物的类磷烯结构. 四种化合物和磷烯的x-z平面的侧面图. SnS与磷烯y-z平面的侧面图. 结构的俯视图, 沿xy方向有晶格向量ab. 相应的倒空间布里渊区和高对称点Г, X, T, Y[110]. (b) SnSe纳米片的TEM图像. (c) SnSe纳米片的原子力显微镜图像以及它的高度数据[117]. (d) 7 nm SnSe薄膜(60 nm × 60 nm)的STM图像. 插图显示了沿黑线的线条轮廓. (e) 在Bi2Se3薄膜上生长的16 nm SnSe薄膜的截面HRTEM图像[118]

    Fig. 11.  (a) Optimized structures of monolayers of group-IV monochalcogenides with phosphorenelike structure. Side view of the x-z plane for the four compounds and for phosphorene. Side view of the y-z plane of SnS and phosphorene. Top view of the structures, with the lattice vectors a and b along the x and y directions. The BZ and the high-symmetry points Г, X, T and Y[110]. (b) TEM images of SnSe nanosheets. (c) AFM images of SnSe nanosheets with their height data[117]. (d) STM image of a 7 nm SnSe film (60 nm × 60 nm). The inset shows the line profile along the black line. (e) Cross-section HRTEM image of a 16 nm SnSe film grown on Bi2Se3 film[118].

    图 12  (a) SnTe薄膜的典型STM形貌图; (b) 域结构, 每个区域的箭头表示晶格畸变的方向; (c) 晶格畸变, 铁电相中晶格畸变和原子位移的示意图, 实线表示岩盐单元格, 虚线表示Te子格的原始单元格, 箭头指向扭曲的方向; (d) 电场对极化的操纵, 在薄膜上施加5 V电压脉冲前后50 ms相同区域的地形图像, 箭头指示极化的方向; (e) 能带弯曲, 在左图中, 沿着两个箭头获得了空间分辨的dI/dV spectra(右图) [123]; (f) 横向SnS存储器件(通道长度L = 4 μm, 从–5.5 V循环到5.5 V)在不同栅极电压Vg下的I-V磁滞曲线[129]; (g) 采用迭代法(实线)和单模弛豫时间近似法(single-mode relaxation time approximation,SMRTA)(虚线)计算了Ⅳ-Ⅵ族单层膜的晶格导热系数随温度的变化. 四种材料的晶格导热系数都很低, 同时沿扶手椅和之字形方向的晶格导热系数不同[136]

    Fig. 12.  (a) Typical STM topographic image of SnTe film. (b) Domain structure. The arrowsin each domain indicate the direction of lattice distortion. (c) Lattice distortion. Schematic of the lattice distortion and atom displacement in the ferroelectric phase. The solid lines indicate the rock-salt unit cell, and the dashed lines indicate the primitive cell of the Te sublattice. The arrows point to the directions of distortion. (d) Polarization manipulation by electric field. Topography images of the same area before (upper) and after (lower) a 5 V voltage pulse is applied for 50 ms on the film. The arrows indicate the direction of polarization. (e) Band-bending. Spatially resolved dI/dV spectra (right panels) obtained along the two arrows in the image on the left[123]. (f) I-V hysteresis curves of a lateral SnS memory device (channel length L = 4 μm, cycled from –5.5 to 5.5 V) measured at different gate voltages Vg[129]. (g) lattice thermal conductivity for the group IV–VI monolayers are calculated as a function of the temperature using iterative (solid lines) and SMRTA (dashed lines) method. All four of the materials have very low lattice thermal conductivity. We also found the different lattice thermal conductivity along the armchair and zigzag directions[136].

    图 13  (a) 室温MD模拟中, α-AsP, α-SbN, α-PN和α-AsN的总能量与时间的关系, 同时显示了6 ps结束时的几何结构[145]; (b) 前人研究的二维压电晶体(MoS2, GeSe和SnSe)和Ⅴ族二元化合物的弛豫离子压电系数的比较[147]

    Fig. 13.  (a) Relationships of total energy and time during room-temperature MD simulations of α-AsP, α-SbN, α-PN, and α-AsN, respectively. The final geometric structures at the end of 6 ps are also shown[145]. (b) Comparison of the relaxed-ion piezoelectric coefficients between previously studied 2D piezoelectric crystals (MoS2, GeSe, and SnSe) and group-V binary compounds presented in this work[147].

  • [1]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [3]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [4]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [5]

    Kou J, Nguyen E P, Merkoci A, Guo Z Z 2020 2D Mater. 7 032001

    [6]

    Epstein I, Chaves A J, Rhodes D A, Frank B, Watanabe K, Taniguchi T, Giessen H, Hone J C, Peres N M R, Koppens F H L 2020 2D Mater. 7 035031

    [7]

    Li L, Ye G, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X, Zhang Y 2014 Nat. Nanotechnol. 10 608

    [8]

    Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717Google Scholar

    [9]

    Niu X, Yi Y, Meng L, Shu H, Pu Y, Li X 2019 J. Phys. Chem. C 123 25775Google Scholar

    [10]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [11]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [12]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [13]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [14]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [15]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [16]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [17]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934Google Scholar

    [18]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [19]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Woomer A H, Farnsworth T W, Hu J, Wells R A, Donley C L, Warren S C 2015 ACS Nano 9 8869Google Scholar

    [22]

    Brent J R, Savjani N, Lewis E A, Haigh S J, Lewis D J, O'Brien P 2014 Chem. Commun. 50 13338Google Scholar

    [23]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [24]

    Island J O, Steele G A, van der Zant H S J, Castellanos-Gomez A 2015 2D Mater. 2 011002Google Scholar

    [25]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [26]

    Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar

    [27]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310Google Scholar

    [28]

    Frost M, Howie R T, Dalladay-Simpson P, Goncharov A F, Gregoryanz E 2016 Phys. Rev. B 93 024113Google Scholar

    [29]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [30]

    Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K, Hemley R J 2004 J. Chem. Phys. 121 11296Google Scholar

    [31]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [32]

    Adeleke A A, Greschner M J, Majumdar A, Wan B, Liu H Y, Li Z P, Gou H Y, Yao Y S 2017 Phys. Rev. B 96 224104Google Scholar

    [33]

    Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001Google Scholar

    [34]

    Mulder A, Michels J P J, Schouten J A 1996 J. Chem. Phys. 105 3235Google Scholar

    [35]

    Gregoryanz E, Goncharov A F, Hemley R J, Mao H K 2001 Phys. Rev. B 64 052103

    [36]

    Eremets M L, Hemley R J, Mao H, Gregoryanz Z 2001 Nature 411 170Google Scholar

    [37]

    Goncharov A F, Gregoryanz E, Mao H, Liu Z, Hemley R J 2000 Phys. Rev. Lett. 85 1262Google Scholar

    [38]

    Eremets M I, Trojan I A, Gavriliuk A G, Medvedev S A 2009 Static Compression of Energetic Materials (Springer Berlin Heidelberg) pp75–97

    [39]

    Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar

    [40]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001Google Scholar

    [41]

    Ji C, Adeleke A A, Yang L, et al. 2020 Sci. Adv. 6 eaba9206Google Scholar

    [42]

    Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar

    [43]

    Kikegawa T, Iwasaki H 1983 Acta Cryst. B 39 158

    [44]

    Ling X, Wang H, Huang S, Xia F, Dresselhaus M S 2015 Proc. Natl. Acad. Sci. U. S. A. 112 4523Google Scholar

    [45]

    Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [46]

    Bridgman P W 1916 J. Am. Chem. Soc. 38 609Google Scholar

    [47]

    Lange S, Schmidt P, Nilges T 2007 Inorg. Chem. 46 4028Google Scholar

    [48]

    Nilges T, Kersting M, Pfeifer T 2008 J. Solid State Chem. 181 1707Google Scholar

    [49]

    Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T 2014 J. Cryst. Growth 405 6Google Scholar

    [50]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 Acs Nano 8 4033Google Scholar

    [51]

    Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C, Zhang Z 2014 Nano Res. 7 853Google Scholar

    [52]

    Zhao W, Xue Z, Wang J, Jiang J, Zhao X, Mu T 2015 ACS Appl. Mater. Interfaces 7 27608Google Scholar

    [53]

    Smith J B, Hagaman D, Ji H F 2016 Nanotechnology 27 215602Google Scholar

    [54]

    Hultgren R, Gingrich N S, Warren B E 1935 J. Chem. Phys. 3 351Google Scholar

    [55]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [56]

    Schuller J A, Karaveli S, Schiros T, He K, Yang S, Kymissis I, Shan J, Zia R 2013 Nat. Nanotechnol. 8 271Google Scholar

    [57]

    Moynihan G, Sanvito S, O’Regan D D 2017 2D Mater. 4 045018

    [58]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [59]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [60]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [61]

    Gu C, Zhao S, Zhang J L, Sun S, Yuan K, Hu Z, Han C, Ma Z, Wang L, Huo F, Huang W, Li Z, Chen W 2017 ACS Nano 11 4943Google Scholar

    [62]

    Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z, Wong W K, Han T, Lin J, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768Google Scholar

    [63]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [64]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393Google Scholar

    [65]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [66]

    Kuriakose S, Ahmed T, Balendhran S, Bansal V, Sriram S, Bhaskaran M, Walia S 2018 2D Mater. 5 032001

    [67]

    Wood J D, Wells S A, Jariwala D, Chen K-S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [68]

    Liu H, Neal A T, Si M W, Du Y C, Ye P D 2014 IEEE Electron Device Lett. 35 795Google Scholar

    [69]

    Kamal C, Ezawa M 2015 Phys. Rev. B 91 085423Google Scholar

    [70]

    Zhang Z Y, Xie J F, Yang D Z, Wang Y H, Si M S, Xue D S 2015 Appl. Phys. Express 8 055201Google Scholar

    [71]

    Zhao A L, Li H, Hu X J, Wang C, Zhang H, Lu J G, Ruan S C, Zeng Y J 2020 J. Phys. D: Appl. Phys. 53 293002Google Scholar

    [72]

    Sun Y J, Wang D, Shuai Z G 2017 J. Phys. Chem. C 121 19080Google Scholar

    [73]

    Zhang H, Ma Y, Chen Z 2015 Nanoscale 7 19152Google Scholar

    [74]

    Chaves A, Mayers M Z, Peeters F M, Reichman D R 2016 Phys. Rev. B 93 115314Google Scholar

    [75]

    Chen Y, Chen C, Kealhofer R, et al. 2018 Adv. Mater. 30 1800754Google Scholar

    [76]

    Kovalska E, Antonatos N, Luxa J, Sofer Z 2020 Inorg. Chem. 59 11259Google Scholar

    [77]

    Wu Z, Hao J 2020 NPJ 2D Mater. Appl. 4 4Google Scholar

    [78]

    Ares P, Palacios J J, Abellan G, Gomez-Herrero J, Zamora F 2018 Adv. Mater. 30 1703771Google Scholar

    [79]

    Zhang P, Liu Z, Duan W, Liu F, Wu J 2012 Phys. Rev. B 85 201410Google Scholar

    [80]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [81]

    Zhao N, Zhu Y F, Jiang Q 2018 Physica E 101 38Google Scholar

    [82]

    Märkl T, Kowalczyk P J, Le Ster M, Mahajan I V, Pirie H, Ahmed Z, Bian G, Wang X, Chiang T C, Brown S A 2017 2D Mater. 5 011002

    [83]

    Shi Z Q, Li H, Yuan Q Q, Song Y H, Lü Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W, Li S C 2019 Adv. Mater. 31 e1806130Google Scholar

    [84]

    Shi Z Q, Li H, Yuan Q Q, Xue C L, Xu Y J, Lü Y Y, Jia Z Y, Chen Y, Zhu W, Li S C 2020 ACS Nano 14 16755Google Scholar

    [85]

    Shi Z Q, Li H, Xue C L, Yuan Q Q, Lü Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar

    [86]

    Yang Z B, Wu Z H, Lyu Y X, Hao J H 2019 Infomat 1 98Google Scholar

    [87]

    Yang Q Q, Liu R T, Huang C, Huang Y F, Gao L F, Sun B, Huang Z P, Zhang L, Hu C X, Zhang Z Q, Sun C L, Wang Q, Tang Y L, Zhang H L 2018 Nanoscale 10 21106Google Scholar

    [88]

    Li Z J, Qiao H, Guo Z N, Ren X H, Huang Z Y, Qi X, Dhanabalan S C, Ponraj J S, Zhang D, Li J Q, Zhao J L, Zhong J X, Zhang H 2018 Adv. Funct. Mater. 28 1705237Google Scholar

    [89]

    Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D, Jia J F 2017 Nano Lett. 17 3035Google Scholar

    [90]

    Kumar P, Singh J, Pandey A C 2013 RSC Adv. 3 2313Google Scholar

    [91]

    Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S, Sakurai T 2004 Phys. Rev. Lett. 93 105501Google Scholar

    [92]

    Sun J T, Huang H, Wong S L, Gao H J, Feng Y P, Wee A T S 2012 Phys. Rev. Lett. 109 246804Google Scholar

    [93]

    Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H, Wang X S 2015 Nano Lett. 15 80Google Scholar

    [94]

    Kawakami N, Lin C L, Kawahara K, Kawai M, Arafune R, Takagi N 2017 Phys. Rev. B 96 205402Google Scholar

    [95]

    Nagase K, Kokubo I, Yamazaki S, Nakatsuji K, Hirayama H 2018 Phys. Rev. B 97 195418Google Scholar

    [96]

    Gou J, Kong L, He X, Huang Y L, Sun J, Meng S, Wu K, Chen L, Wee A T S 2020 Sci. Adv. 6 eaba2773Google Scholar

    [97]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [98]

    Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [99]

    Shi G, Kioupakis E 2015 J. Appl. Phys. 117 065103Google Scholar

    [100]

    Zhu H, Sun W, Armiento R, Lazic P, Ceder G 2014 Appl. Phys. Lett. 104 082107Google Scholar

    [101]

    Barraza-Lopez S, Fregoso B M, Villanova J W, Parkin S S P, Chang K 2021 Rev. Mod. Phys. 93 011001Google Scholar

    [102]

    Makinistian L, Albanesi E A 2006 Phys. Rev. B 74 045206Google Scholar

    [103]

    Baumgardner W J, Choi J J, Lim Y F, Hanrath T 2010 J. Am. Chem. Soc. 132 9519Google Scholar

    [104]

    Xu X, Song Q, Wang H, Li P, Zhang K, Wang Y, Yuan K, Yang Z, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 12601Google Scholar

    [105]

    Pejova B, Tanusevski A 2008 J. Phys. Chem. C 112 3525Google Scholar

    [106]

    Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [107]

    Shi G, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [108]

    Hu Z, Ding Y, Hu X, Zhou W, Yu X, Zhang S 2019 Nanotechnology 30 252001Google Scholar

    [109]

    Kamal C, Chakrabarti A, Ezawa M 2016 Phys. Rev. B 93 125428Google Scholar

    [110]

    Gomes L C, Carvalho A 2015 Phys. Rev. B 92 085406Google Scholar

    [111]

    Deb A K, Kumar V 2017 Phys. Status Solidi B 254 1600379Google Scholar

    [112]

    Huang L, Wu F, Li J 2016 J. Chem. Phys. 144 114708Google Scholar

    [113]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [114]

    Ribeiro-Soares J, Almeida R M, Ado L G C, Dresselhaus M S, Jorio A 2015 Phys. Rev. B 91 205421Google Scholar

    [115]

    Burton L A, Walsh A 2013 Appl. Phys. Lett. 102 132111Google Scholar

    [116]

    Mukherjee B, Cai Y, Tan H R, Feng Y P, Tok E S, Sow C H 2013 ACS Appl. Mater. Interfaces 5 9594Google Scholar

    [117]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [118]

    Wang Z, Wang J, Zang Y, Zhang Q, Shi J-A, Jiang T, Gong Y, Song C L, Ji S H, Wang L L, Gu L, He K, Duan W, Ma X, Chen X, Xue Q K 2015 Adv. Mater. 27 4150Google Scholar

    [119]

    Jiang J Z, Wong C P Y, Zou J, Li S S, Wang Q X, Chen J Y, Qi D Y, Wang H Y, Eda G, Chua D H C, Shi Y M, Zhang W J, Wee A T S 2017 2 D Mater. 4 021026

    [120]

    Ju H, Kim J 2016 ACS Nano 10 5730Google Scholar

    [121]

    Zhao S, Wang H, Zhou Y, Liao L, Jiang Y, Yang X, Chen G, Lin M, Wang Y, Peng H, Liu Z 2015 Nano Res. 8 288Google Scholar

    [122]

    Huang Y J, Li L L, Lin Y H, Nan C W 2017 J. Phys. Chem. C 121 17530Google Scholar

    [123]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [124]

    Chang K, Kaloni T P, Lin H, Bedoya-Pinto A, Pandeya A K, Kostanovskiy I, Zhao K, Zhong Y, Hu X, Xue Q K, Chen X, Ji S H, Barraza-Lopez S, Parkin S S P 2019 Adv. Mater. 31 e1804428Google Scholar

    [125]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601Google Scholar

    [126]

    Xiong F, Zhang X, Lin Z, Chen Y 2018 J. Materiomics 4 139Google Scholar

    [127]

    Barraza-Lopez S, Kaloni T P, Poudel S P, Kumar P 2018 Phys. Rev. B 97 024110Google Scholar

    [128]

    Hanakata P Z, Carvalho A, Campbell D K, Park H S 2016 Phys. Rev. B 94 035304Google Scholar

    [129]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [130]

    Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [131]

    Wang H, Qian X 2017 Nano Lett. 17 5027Google Scholar

    [132]

    Chang K, Miller B J, Yang H, Lin H, Parkin S S P, Barraza-Lopez S, Xue Q K, Chen X, Ji S H 2019 Phys. Rev. Lett. 122 206402Google Scholar

    [133]

    Fei R X, Li W B, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [134]

    Guo R Q, Wang X J, Kuang Y D, Huang B L 2015 Phys. Rev. B 92 115202Google Scholar

    [135]

    Ding G, Gao G, Yao K 2015 Sci. Rep. 5 9567Google Scholar

    [136]

    Shafique A, Shin Y H 2017 Sci. Rep. 7 506Google Scholar

    [137]

    Pandit A, Haleoot R, Hamad B 2021 J. Mater. Sci. 56 10424Google Scholar

    [138]

    Zhang R, Zhou Z, Yao Q, Qi N, Chen Z 2021 Phys. Chem. Chem. Phys. 23 3794Google Scholar

    [139]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [140]

    Kou L Z, Ma Y D, Tan X, Frauenheim T, Du A J, Smith S 2015 J. Phys. Chem. C 119 6918Google Scholar

    [141]

    Zhang Q Y, Schwingenschloegl U 2016 Phys. Rev. B 93 045312Google Scholar

    [142]

    Li S S, Ji W X, Li P, Hu S J, Zhou T, Zhang C W, Yan S S 2017 Sci. Rep. 7 6126Google Scholar

    [143]

    Nie Y, Rahman M, Liu P, Sidike A, Xia Q, Guo G H 2017 Phys. Rev. B 96 075401Google Scholar

    [144]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [145]

    W. Yu, C.Niu, Z. Zhu, X. Wang, W. Zhang 2016 J. Mater. Chem. C 4 8

    [146]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [147]

    Yin H, Gao J, Zheng G P, Wang Y, Ma Y 2017 J. Phys. Chem. C 121 25576Google Scholar

    [148]

    Chen F Y, Xu H X, Wang J Y, Wang Z D, Liu X Q, Lu Y, Wang L 2019 J. Appl. Phys. 125 214303Google Scholar

  • [1] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241590
    [2] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [9] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [10] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [11] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [15] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [18] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  12162
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-04-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-20

/

返回文章
返回