-
Artificial visual system (AVS) has garnered increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials—such as MoS₂, WSe₂, and black phosphorus—have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. This article explores recent breakthroughs in the integration of 2D materials with AVS. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe₂ and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retina’s photoreceptors, bipolar cells, and even neural synapses, enabling functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by mimicking human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. We emphasize several critical bottlenecks: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; and the immature state of neuromorphic elements, which often lack stability, long-term memory, and bio-realistic plasticity. Moreover, practical integration into real-world applications demands compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will evolve into highly compact, intelligent, and context-aware agents—capable of autonomous perception and interaction in complex real-world settings.
-
Keywords:
- Two-Dimensional Materials /
- Artificial Visual Systems /
- 3D Visual Information Acquisition /
- Bio-inspired Sensory Perception
-
[1] Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46
[2] Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84
[3] Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275
[4] Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776
[5] Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 371 (in Chinese) [沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 371]
[6] Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010
[7] Liao F Y, Cai Y, 2021 PHYSICS 50 378 (in Chinese) [廖付友, 柴扬 2021 物理 50 378]
[8] Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208
[9] Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128
[10] Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751
[11] Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968
[12] Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 300 (in Chinese) [邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 300]
[13] Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101
[14] Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 67 (in Chinese) [李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 67]
[15] Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802
[16] Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505
[17] Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2502072
[18] Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503
[19] Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446
[20] Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404
[21] Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043
[22] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62
[23] Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173
[24] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27
[25] Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650
[26] Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261
[27] Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257
计量
- 文章访问数: 23
- PDF下载量: 2
- 被引次数: 0