搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料与人工视觉系统的多维融合:前沿突破与范式革新

闻雨 韩素婷 周晔

引用本文:
Citation:

二维材料与人工视觉系统的多维融合:前沿突破与范式革新

闻雨, 韩素婷, 周晔

Multidimensional Heterogeneous Integration of Two-Dimensional Materials and Artificial Visual Systems: Frontier Innovations and Paradigm-Shifting Advancements

WEN Yu, HAN Su-Ting, ZHOU Ye
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 人工视觉系统因在医疗诊断、机器视觉等领域具备广泛应用前景而倍获关注,但其发展长期受限于传统材料的物理瓶颈。近年来,二维半导体材料由于其出色的光电性能和原子级厚度,被认为是构建人工视觉系统的革命性平台。最新研究表明二维材料的可调谐带隙与高效光电转换特性已被成功应用于单目3D视差重建,其动态成像速率可达传统器件的3倍以上。尽管如此,该领域仍面临显著挑战,如二维材料大面积制备工艺复杂性,宽光谱响应,高帧率感知与低功耗平衡难题等问题。这些问题的解决将推动人工传感系统向更智能、更精密的方向突破,实现从仿生视网膜到类脑智能体的跃迁。
    Artificial visual system (AVS) has garnered increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials—such as MoS₂, WSe₂, and black phosphorus—have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. This article explores recent breakthroughs in the integration of 2D materials with AVS. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe₂ and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retina’s photoreceptors, bipolar cells, and even neural synapses, enabling functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by mimicking human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. We emphasize several critical bottlenecks: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; and the immature state of neuromorphic elements, which often lack stability, long-term memory, and bio-realistic plasticity. Moreover, practical integration into real-world applications demands compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will evolve into highly compact, intelligent, and context-aware agents—capable of autonomous perception and interaction in complex real-world settings.
  • [1]

    Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46

    [2]

    Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84

    [3]

    Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275

    [4]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776

    [5]

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 371 (in Chinese) [沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 371]

    [6]

    Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010

    [7]

    Liao F Y, Cai Y, 2021 PHYSICS 50 378 (in Chinese) [廖付友, 柴扬 2021 物理 50 378]

    [8]

    Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208

    [9]

    Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128

    [10]

    Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751

    [11]

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968

    [12]

    Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 300 (in Chinese) [邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 300]

    [13]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101

    [14]

    Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 67 (in Chinese) [李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 67]

    [15]

    Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802

    [16]

    Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505

    [17]

    Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2502072

    [18]

    Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503

    [19]

    Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446

    [20]

    Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404

    [21]

    Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043

    [22]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62

    [23]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173

    [24]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27

    [25]

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650

    [26]

    Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261

    [27]

    Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, doi: 10.7498/aps.73.20231166
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, doi: 10.7498/aps.72.20231786
    [3] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, doi: 10.7498/aps.72.20230729
    [4] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, doi: 10.7498/aps.72.20222095
    [5] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, doi: 10.7498/aps.71.20220407
    [6] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, doi: 10.7498/aps.71.20220030
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, doi: 10.7498/aps.71.20221424
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, doi: 10.7498/aps.71.20211048
    [9] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用. 物理学报, doi: 10.7498/aps.71.20220308
    [10] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展. 物理学报, doi: 10.7498/aps.70.20210004
    [11] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, doi: 10.7498/aps.70.20202132
    [12] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, doi: 10.7498/aps.70.20201425
    [13] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, doi: 10.7498/aps.70.20210956
    [14] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [15] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, doi: 10.7498/aps.70.20211048
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, doi: 10.7498/aps.69.20191486
    [17] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, doi: 10.7498/aps.69.20200654
    [18] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, doi: 10.7498/aps.69.20200709
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-14

/

返回文章
返回