搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料的全光器件

徐依全 王聪

引用本文:
Citation:

基于二维材料的全光器件

徐依全, 王聪

All-optical devices based on two-dimensional materials

Xu Yi-Quan, Wang Cong
PDF
HTML
导出引用
  • 近年通信技术的飞跃, 对光学设备的紧凑性、响应速度、工作带宽和控制效率提出新的挑战. 石墨烯的发现, 使得二维材料飞速发展, 不断涌现出一系列新材料, 如MXene、黑磷、过渡金属硫化物等. 这些新型二维材料有着出色的非线性光学效应、强光-物质交互作用、超宽的工作带宽. 利用其热光效应、非线性效应并结合光学结构, 能够满足光通信中超快速的需求. 紧凑、超快、超宽将会是未来二维材料全光器件的标签. 本文重点综述基于二维材料的热光效应与非线性效应的全光器件, 介绍光纤型的马赫-曾德尔干涉仪结构、迈克耳孙干涉仪结构、偏振干涉结构以及微环结构, 最后阐述并回顾最新的进展, 分析全光器件面临的挑战和机遇, 提出全光领域的前景与发展趋势.
    The leap in communication technology in recent years has brought new challenges to the compactness, modulation speed, working bandwidth and control efficiency of modulation equipment. The discovery of graphene has led the two-dimensional materials to develop rapidly, and a series of new materials have continuously emerged, such as MXene, black phosphorus, transition metal sulfides, etc. These new two-dimensional materials have excellent nonlinear optical effects, strong light-matter interaction, and ultra-wide working bandwidth. Using their thermo-optic effect, nonlinear effect and the combination with optical structure, the needs of ultra-fast modulation in optical communication can be met. Compact, ultra-fast, and ultra-wide will become the tags for all-optical modulation of two-dimensional materials in the future. This article focuses on all-optical devices based on thermo-optical effects and non-linear effects of two-dimensional materials, and introduces fiber-type Mach-Zehnder interferometer structures, Michelson interferometer structures, polarization interferometer structures, and micro-ring structures. In this paper, the development status of all-optical devices is discussed from the perspectives of response time, loss, driving energy, extinction ratio, and modulation depth. Finally, we review the latest developments, analyze the challenges and opportunities faced by all-optical devices, and propose that all-optical devices should be developed in the direction of ring resonators and finding better new two-dimensional materials. We believe that all-optical devices will maintain high-speed development, acting as a cornerstone to promote the progress of all-optical systems.
      通信作者: 王聪, gxgcwang@163.com
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2203503)、国家自然科学基金(批准号: 61435010, 61575089, 61705140, 61805146) 和台北科技大学与深圳大学学术合作专题研究计划(批准号: 2019007) 资助的课题
      Corresponding author: Wang Cong, gxgcwang@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2203503), the National Natural Science Foundation of China (Grant Nos. 61435010, 61575089, 61705140, 61805146), and the “ National ” Taipei University of Technology-Shenzhen University Joint Research Program, China (Grant No. 2019007).
    [1]

    Koos C, Vorreau P, Vallaitis T, et al. 2009 Nat. Photonics 3 216Google Scholar

    [2]

    Willner A E, Khaleghi S, Chitgarha M R, et al. 2014 J. Lightwave Technol. 32 660Google Scholar

    [3]

    Bigo S, Leclerc O, Desurvire E 1997 IEEE J. Sel. Top. Quantum Electron. 3 1208Google Scholar

    [4]

    Slavik R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar

    [5]

    Hu X, Wang A, Zeng M, et al. 2016 Sci. Rep.-UK 6 32911Google Scholar

    [6]

    Koos C, Jacome L, Poulton C, et al. 2007 Opt. Express 15 5976Google Scholar

    [7]

    Patel N S, Rauschenbach K A, Hall K L 1996 IEEE Photonics Technol. Lett. 8 1695Google Scholar

    [8]

    Wang J, Kahn J M 2004 IEEE Photonics Technol. Lett. 16 1397Google Scholar

    [9]

    Alloatti L, Palmer R, Diebold S, et al. 2014 Light-Sci. Appl. 3 e173Google Scholar

    [10]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [11]

    Wooten E L, Kissa K M, Yi-Yan A, et al. 2000 IEEE J. Sel. Top. Quantum Electron. 6 69Google Scholar

    [12]

    Wang C, Zhang M, Chen X, et al. 2018 Nature 562 101Google Scholar

    [13]

    Grinblat G, Abdelwahab I, Nielsen M P, et al. 2019 ACS Nano 13 9504Google Scholar

    [14]

    Ono M, Hata M, Tsunekawa M, et al. 2020 Nat. Photonics 14 37Google Scholar

    [15]

    Almeida V R, Barrios C A, Panepucci R R, et al. 2004 Nature 431 1081Google Scholar

    [16]

    Hu X, Jiang P, Ding C, et al. 2008 Nat. Photonics 2 185Google Scholar

    [17]

    Volz T, Reinhard A, Winger M, et al. 2012 Nat. Photonics 6 605Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [21]

    Zhang Y B, Tan Y W, Stormer H L, et al. 2005 Nature 438 201Google Scholar

    [22]

    Stoller M D, Park S, Zhu Y, et al. 2008 Nano Lett. 8 3498Google Scholar

    [23]

    Lee C, Wei X, Kysar J W, et al. 2008 Science 321 385Google Scholar

    [24]

    Nair R R, Blake P, Grigorenko A N, et al. 2008 Science 320 1308Google Scholar

    [25]

    Balandin A A, Ghosh S, Bao W, et al. 2008 Nano Lett. 8 902Google Scholar

    [26]

    Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768Google Scholar

    [27]

    Xia F, Wang H, Xiao D, et al. 2014 Nat. Photonics 8 899Google Scholar

    [28]

    Koppens F H L, Mueller T, Avouris P, et al. 2014 Nat. Nanotechnol 9 780Google Scholar

    [29]

    Cepellotti A, Fugallo G, Paulatto L, et al. 2015 Nat. Commun. 6 6400Google Scholar

    [30]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [31]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [32]

    Tan C, Zhang H 2015 Chem. Soc. Rev. 44 2713Google Scholar

    [33]

    Lv R, Robinson J A, Schaak R E, et al. 2015 Accounts Chem. Res. 48 56Google Scholar

    [34]

    Zhi C, Bando Y, Tang C, et al. 2009 Adv. Mater. 21 2889Google Scholar

    [35]

    Zhang J, Chen Y, Wang X 2015 Energy Environ. Sci. 8 3092Google Scholar

    [36]

    Osada M, Sasaki T 2009 J. Mater. Chem. 19 2503Google Scholar

    [37]

    Ma R, Sasaki T 2015 Accounts Chem. Res. 48 136Google Scholar

    [38]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124Google Scholar

    [39]

    Naguib M, Mochalin V N, Barsoum M W, et al. 2014 Adv. Mater. 26 992Google Scholar

    [40]

    Wang C, Wang Y Z, Jiang X T, et al. 2019 Laser Phys. Lett. 16 651076Google Scholar

    [41]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [42]

    Bae S, Kim H, Lee Y, et al. 2010 Nat. Nanotechnol. 5 574Google Scholar

    [43]

    Bao Q, Zhang H, Wang Y, et al. 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [44]

    Song Y, Jang S, Han W, et al. 2010 Appl. Phys. Lett. 96 511225Google Scholar

    [45]

    Tan W D, Su C Y, Knize R J, et al. 2010 Appl. Phys. Lett. 96 311063Google Scholar

    [46]

    Hasan T, Sun Z, Wang F, et al. 2009 Adv. Mater. 21 3874Google Scholar

    [47]

    Sun Z, Hasan T, Torrisi F, et al. 2010 ACS Nano 4 803Google Scholar

    [48]

    Sun D, Divin C, Rioux J, et al. 2010 Nano Lett. 10 1293Google Scholar

    [49]

    Polat E O, Kocabas C 2013 Nano Lett. 13 5851Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, et al. 2011 Nature 474 64Google Scholar

    [51]

    Lee C C, Mohr C, Bethge J, et al. 2012 Opt. Lett. 37 3084Google Scholar

    [52]

    Baylam I, Cizmeciyan M N, Ozharar S, et al. 2014 Opt. Lett. 39 5180Google Scholar

    [53]

    Liu M, Yin X, Zhang X 2012 Nano Lett. 12 1482Google Scholar

    [54]

    Lee E J, Choi S Y, Jeong H, et al. 2015 Nat. Commun. 6 6851Google Scholar

    [55]

    Lee C, Suzuki S, Xie W, et al. 2012 Opt. Express 20 5264Google Scholar

    [56]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [57]

    Luo Z, Wu D, Xu B, et al. 2016 Nanoscale 8 1066Google Scholar

    [58]

    Martinez A, Yamashita S 2012 Appl. Phys. Lett. 101 411184Google Scholar

    [59]

    Li W, Chen B, Meng C, et al. 2014 Nano Lett. 14 955Google Scholar

    [60]

    Gao Y, Shiue R, Gan X, et al. 2015 Nano Lett. 15 2001Google Scholar

    [61]

    Phare C T, Lee Y D, Cardenas J, et al. 2015 Nat. Photonics 9 511Google Scholar

    [62]

    Schall D, Neumaier D, Mohsin M, et al. 2014 ACS Photonics 1 781Google Scholar

    [63]

    Wang F, Zhang Y, Tian C, et al. 2008 Science 320 206Google Scholar

    [64]

    Zanella I, Guerini S, Fagan S B, et al. 2008 Phys. Rev. B 77 734047Google Scholar

    [65]

    Han M Y, Oezyilmaz B, Zhang Y, et al. 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [66]

    Ni Z H, Yu T, Lu Y H, et al. 2008 ACS Nano 2 2301Google Scholar

    [67]

    Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [68]

    Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271Google Scholar

    [69]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [70]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [71]

    Yuan H, Liu X, Afshinmanesh F, et al. 2015 Nat. Nanotechnol. 10 707Google Scholar

    [72]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [73]

    Wang X, Jones A M, Seyler K L, et al. 2015 Nat. Nanotechnol. 10 517Google Scholar

    [74]

    Li D, Jussila H, Karvonen L, et al. 2015 Sci. Rep.-UK 5 15899Google Scholar

    [75]

    Wang Y, Zhang F, Tang X, et al. 2018 Laser Photonics Rev. 12 1800016Google Scholar

    [76]

    Song Y, Liang Z, Jiang X, et al. 2017 2D Mater. 4 450104Google Scholar

    [77]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [78]

    Jhon Y I, Koo J, Anasori B, et al. 2017 Adv. Mater. 29 1702496Google Scholar

    [79]

    Naguib M, Mashtalir O, Carle J, et al. 2012 ACS Nano 6 1322Google Scholar

    [80]

    Ying Y, Liu Y, Wang X, et al. 2015 ACS Appl. Mater. Interfaces 7 1795Google Scholar

    [81]

    Urbankowski P, Anasori B, Makaryan T, et al. 2016 Nanoscale 8 11385Google Scholar

    [82]

    Jiang X, Liu S, Liang W, et al. 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [83]

    Li R, Zhang L, Shi L, et al. 2017 ACS Nano 11 3752Google Scholar

    [84]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [85]

    Wang K, Feng Y, Chang C, et al. 2014 Nanoscale 6 10530Google Scholar

    [86]

    Demetriou G, Bookey H T, Biancalana F, et al. 2016 Opt. Express 24 13033Google Scholar

    [87]

    Wang K, Szydlowska B M, Wang G, et al. 2016 ACS Nano 10 6923Google Scholar

    [88]

    Ronchi R M, Arantes J T, Santos S F 2019 Ceram. Int. 45 18167Google Scholar

    [89]

    Zheng X, Chen R, Shi G, et al. 2015 Opt. Lett. 40 3480Google Scholar

    [90]

    Guo Q, Wu K, Shao Z, et al. 2019 Adv. Opt. Mater. 7 1900322Google Scholar

    [91]

    Zhou H, Cai Y, Zhang G, et al. 2017 NPJ 2D Mater. Appl. 1 14Google Scholar

    [92]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [93]

    Lee J, Koo J, Jhon Y M, et al. 2014 Opt. Express 22 6165Google Scholar

    [94]

    Sotor J, Sobon G, Macherzynski W, et al. 2014 Laser Phys. Lett. 11 55102Google Scholar

    [95]

    Zeng Z, Yin Z, Huang X, et al. 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [96]

    Aharon E, Albo A, Kalina M, et al. 2006 Adv. Funct. Mater. 16 980Google Scholar

    [97]

    Hernandez Y, Nicolosi V, Lotya M, et al. 2008 Nat. Nanotechnol. 3 563Google Scholar

    [98]

    Xia H, Li H, Lan C, et al. 2014 Opt. Express 22 17341Google Scholar

    [99]

    Reina A, Jia X, Ho J, et al. 2009 Nano Lett. 9 30Google Scholar

    [100]

    Wu Q, Chen S, Wang Y, et al. 2019 Adv. Mater. Technol.-US 4 1800532Google Scholar

    [101]

    Gan X, Zhao C, Wang Y, et al. 2015 Optica 2 468Google Scholar

    [102]

    Wu K, Guo C, Wang H, et al. 2017 Opt. Express 25 17639Google Scholar

    [103]

    Wang Y, Huang W, Wang C, et al. 2019 Laser Photonics Rev. 13 1800313Google Scholar

    [104]

    Wang Y, Huang W, Zhao J, et al. 2019 J. Mater. Chem. C 7 871Google Scholar

    [105]

    Wang C, Wang Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [106]

    Wang Y, Wu K, Chen J 2018 Chin. Opt. Lett. 16 20003Google Scholar

    [107]

    Wang Y, Gan X, Zhao C, et al. 2016 Appl. Phys. Lett. 108 171905Google Scholar

    [108]

    Chu R, Guan C, Bo Y, et al. 2020 Opt. Lett. 45 177Google Scholar

    [109]

    Wu Q, Huang W, Wang Y, et al. 2020 Adv. Opt. Mater. 8 1900977Google Scholar

    [110]

    Xing G, Guo H, Zhang X, et al. 2010 Opt. Express 18 4564Google Scholar

    [111]

    Wu Y, Wu Q, Sun F, et al. 2015 Proc. Natl Acad. Sci. U.S.A. 112 11800Google Scholar

    [112]

    Shao Z, Wu K, Chen J 2020 Chin. Opt. Lett. 18 60603Google Scholar

    [113]

    Shen M, Ruan L, Wang X, et al. 2011 Phys. Rev. A 83 45804Google Scholar

    [114]

    Eliasson B, Liu C S 2016 New J. Phys. 18 53007Google Scholar

    [115]

    Ge Y, Zhu Z, Xu Y, et al. 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [116]

    Zheng J, Tang X, Yang Z, et al. 2017 Adv. Opt. Mater. 5 1700026Google Scholar

    [117]

    FEJER M M, MAGEL G A, JUNDT D H, et al. 1992 IEEE J. Quantum Electron. 28 2631Google Scholar

    [118]

    Yu S, Wu X, Chen K, et al. 2016 Optica 3 541Google Scholar

    [119]

    Wu X, Yu S, Yang H, et al. 2016 Carbon 96 1114Google Scholar

    [120]

    Zhang F, Han S, Liu Y, et al. 2015 Appl. Phys. Lett. 106 91102Google Scholar

    [121]

    Xia F, Farmer D B, Lin Y, et al. 2010 Nano Lett. 10 715Google Scholar

    [122]

    Zheng J, Yang Z, Si C, et al. 2017 ACS Photonics 4 1466Google Scholar

    [123]

    Wang K, Zheng J, Huang H, et al. 2019 Opt. Express 27 16798Google Scholar

    [124]

    Chen S, Miao L, Chen X, et al. 2015 Adv. Opt. Mater. 3 1769Google Scholar

    [125]

    Liao Y, Feng G Y, Zhou H, et al. 2018 IEEE Photonics Technol. Lett. 30 661Google Scholar

    [126]

    Song Y, Chen Y, Jiang X, et al. 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [127]

    Song Y, Chen Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1801777Google Scholar

    [128]

    Wu Y, Yao B, Cheng Y, et al. 2014 IEEE Photonics Technol. Lett. 26 249Google Scholar

    [129]

    Liu H, Neal A T, Zhu Z, et al. 2014 ACS Nano 8 4033Google Scholar

    [130]

    Wood J D, Wells S A, Jariwala D, et al. 2014 Nano Lett. 14 6964Google Scholar

    [131]

    Island J O, Steele G A, van der Zant H S J, et al. 2015 2D Mater. 2 11002Google Scholar

    [132]

    Doganov R A, O'Farrell E C T, Koenig S P, et al. 2015 Nat. Commun. 6 6647Google Scholar

    [133]

    Ohtsubo Y, Perfetti L, Goerbig M O, et al. 2013 New J. Phys. 15 33041Google Scholar

    [134]

    Rao S M, Heitz J J F, Roger T, et al. 2014 Opt. Lett. 39 5345Google Scholar

    [135]

    Li X, Cai W, An J, et al. 2009 Science 324 1312Google Scholar

    [136]

    Wu K, Soci C, Shum P P, et al. 2014 Opt. Express 22 295Google Scholar

    [137]

    Wu K, Garcia De Abajo J, Soci C, et al. 2014 Light-Sci. Appl. 3 e147Google Scholar

    [138]

    Rajbenbach H, Fainman Y, Lee S H 1987 Appl. Opt. 26 1024Google Scholar

    [139]

    O'Brien J L 2007 Science 318 1567Google Scholar

    [140]

    Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [141]

    Appeltant L, Soriano M C, Van der Sande G, et al. 2011 Nat. Commun. 2 468Google Scholar

    [142]

    Woods D, Naughton T J 2012 Nat. Phys. 8 257Google Scholar

    [143]

    Chung I, Lee B, He J, et al. 2012 Nature 485 486Google Scholar

    [144]

    Lee M M, Teuscher J, Miyasaka T, et al. 2012 Science 338 643Google Scholar

    [145]

    Kim H, Lee C, Im J, et al. 2012 Sci. Rep.-UK 2 591Google Scholar

    [146]

    Dikin D A, Stankovich S, Zimney E J, et al. 2007 Nature 448 457Google Scholar

    [147]

    Sobon G, Sotor J, Jagiello J, et al. 2012 Opt. Express 20 19463Google Scholar

    [148]

    Moore J E 2010 Nature 464 194Google Scholar

    [149]

    Zhang H, Liu C, Qi X, et al. 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Dash A, Palanchoke U, Gely M, et al. 2019 Opt. Express 27 34094Google Scholar

    [151]

    Qiu C, Yang Y, Li C, et al. 2017 Sci. Rep.-UK 7 17046Google Scholar

    [152]

    Gao Y, Zhou W, Sun X, et al. 2017 Opt. Lett. 42 1950Google Scholar

    [153]

    Yuhan Y, Kangkang W, Shan G, et al. 2020 Nanophotonics-Berlin 20190510Google Scholar

    [154]

    Grinblat G, Nielsen M P, Dichtl P, et al. 2019 Sci. Adv. 5 w32626Google Scholar

  • 图 1  (a)石墨烯[27], (b) TMDs[27], (c) BP[27]和(d) MXene[78]的原子结构及带隙结构; (e)各材料带隙分布图[27,78]

    Fig. 1.  Atomic structures and band structures of (a) graphene[27], (b) TMDs[27], (c) BP[27]and (d) MXene[78]. (e) Distribution diagram of the bandgap of each material[27]. Reprinted by permission from Ref. [27]. Copyright Nature Photonics. Reprinted by permission from Ref. [78]. Copyright Advanced Materials.

    图 2  (a)基于MXene材料的MZI全光调制器的实验装置[100]; (b) MXene Ti3C2Tx纳米片的高放大倍数HRTEM原子晶格结构[100]; (c)沉积有MXenes的微纳光纤的光学显微镜图像[100]; (d) Ti3C2Tx和Ti3AlC2的拉曼光谱图[100]

    Fig. 2.  (a) Experimental setup of an MZI all-optical modulator based on MXene materials; (b) high-magnification HRTEM atomic lattice structure of MXene nanosheet; (c) optical microscopy image of microfibers deposited with MXenes; (d) Raman spectrum of Ti3C2Tx and Ti3AlC2. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 3  (a)两个输出端口的干涉频谱[100]; (b)在122 mW的控制光(泵)功率下的干涉条纹[100]; (c)相移与不同控制光功率的关系[100]

    Fig. 3.  (a) Interference spectra of two output ports; (b) interference fringes at a control light (pump) power of 122 mW; (c) phase shift versus different control light (pump) powers. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 4  (a) 980 nm控制光波形图[100]; (b)信号光开关转换及其拟合曲线[100]; (c)错误输出[100]; (d)信号光为40 Hz时的输出[100]

    Fig. 4.  (a) Waveform of the 980 nm control light (pump); (b) signal light switch conversion and its fitting curve; (c) output breaking; (d) waveforms of signal light at 40 Hz. Reprinted by permission from Ref. [100]. Copyright Advanced Materials.

    图 5  (a) MI结构的全光开关实验装置[104]; (b)控制光和信号光的波形及拟合曲线[104]; (c)控制光调制频率改变时的信号光波形[104]

    Fig. 5.  (a) All-optical switch experimental device with MI structure; (b) waveforms of control light and signal light and their fitting curves; (c) waveforms of signal light when control light modulation frequency changes. Reprinted by permission from Ref. [104]. Copyright Journal of Materials Chemistry C.

    图 6  (a) MI双芯光纤三维结构示意图[108]; (b)双芯光纤横截面[108]; (c), (d)双芯光纤抛光区域的横截面和抛光表面[108]; (e)双芯光纤输出光强度监视[108]

    Fig. 6.  (a) Schematic diagram of the three-dimensional structure of MI twin-core fiber; (b) cross section of twin-core fiber; (c) cross section and (d) polished surface of the polished area of twin-core fiber; (e) twin-core fiber output light intensity monitoring. Reprinted by permission from Ref. [108]. Copyright Optics Letters.

    图 7  (a) PI结构全光调制实验装置[106]; (b)信号光波形, 插图为控制光波形[106]; (c)单个全光信号切换以及相应的拟合曲线[106]; (d)长期测量的输出信号光[106]

    Fig. 7.  (a) PI structure all-optical modulation experimental device; (b) signal light waveform, illustration: control light waveform; (c) single all optical signal switching and corresponding fitting curve; (d) output signal light for long-term measurement. Reprinted by permission from Ref. [106]. Copyright Chinese Optics Letters.

    图 8  (a)基于MFR的全光开光实验装置[107]; (b) GMFR制备过程[107]; (c) GMFR光学显微镜图像[107]; (d)控制光开(黑色)和控制光关(蓝色)的GMFR透射光谱, 红线表示FBG过滤的反射峰[107]

    Fig. 8.  (a) All-optical switch experimental device; (b) GMFR preparation process; (c) GMFR optical microscope image; (d) GMFR transmission spectrum of controlled light on (black) and controlled light off (blue), the red line represents the reflection peak of FBG filtering. Reprinted by permission from Ref. [107]. Copyright Applied Physics Letters.

    图 9  全光开关的信号光与控制光波形对比[107]

    Fig. 9.  Comparison of signal light and control light waveforms of all-optical switches. Reprinted by permission from Ref. [107]. Copyright Applied Physics Letters.

    图 10  (a)基于锑材料微纳光纤的全光阈值器实验装置[76]; (b)光纤激光源脉冲的波形[76]; (c)噪声脉冲的波形[76]; (d)光纤激光源和噪声源合并后的脉冲波形[76]

    Fig. 10.  (a) Experimental diagram of all-optical thresholder; (b) pulse profile of fiber laser source; (c) noise pulse tracking; (d) merger pulse trajectory includes fiber laser source and noise source. Reprinted by permission from Ref. [76]. Copyright 2D Materials.

    图 11  (a)光脉冲穿过锑材料微纳光纤之前的波形[76]; (b)光脉冲穿过锑材料微纳光纤之后的波形[76]

    Fig. 11.  (a) Waveform of light pulse before passing through antimony micro-nano fiber; (b) waveform of light pulse after passing through micro-nano fiber of antimony material. Reprinted by permission from Ref. [76]. Copyright 2D Materials.

    图 12  (a)基于石墨烯光克尔效应的全光相位调制器实验装置[118]; (b) GCM的光学显微镜图像[118]; (c) GCM的传输频谱[118]; (d)顶部: 成对的开关脉冲; 中部: GCM的光纤的脉冲调制信号; 底部: 包含GCM的MZI脉冲调制信号[118]; (e)对于包含GCM的损耗调制(红色实线), MZI调制器相位调制(红色实线)以及MZI的损耗调制(蓝色虚线)的输出信号的MD与峰值开关功率的关系[118]

    Fig. 12.  (a) Experimental device of all-optical phase modulator based on graphene optical Kerr effect; (b) optical microscope image of GCM; (c) transmission spectrum of GCM; (d) top: paired switching pulses; middle: pulse modulation signal of GCM fiber; bottom: MZI pulse modulation signal containing GCM; (e) for loss modulation including GCM (solid red line), MZI modulator phase modulation (solid red line) and MZI loss modulation (blue dotted line) output signal modulation depth and peak switching power relationship. Reprinted by permission from Ref. [118]. Copyright Optica.

    图 13  输出信号光在不同时间范围内的波形[118]

    Fig. 13.  Waveforms of the output signal light in different time ranges. Reprinted by permission from Ref. [118]. Copyright Optica.

    图 14  (a)具有BP涂层的微纳光纤光学显微镜图像[122]; (b)基于BP四波混频的波长转换器示意图[122]; (c)系统输出光谱图[122]; (d)不同RF频率下的消光比和转换效率[122]; (e)不同RF频率下对应的FWM光频谱细节[122]

    Fig. 14.  (a) Optic microscope image of BP-coated microfiber; (b) schematic diagram of wavelength converter based on BP four-wave mixing; (c) system output spectrum; (d) extinction ratio and conversion at different RF frequencies efficiency; (e) details of the corresponding FWM optical spectrum at different RF frequencies. Reprinted by permission from Ref. [122]. Copyright Acs Photonics.

    表 1  二维材料特性总结

    Table 1.  Properties of different 2D materials.

    二维材料
    种类
    能隙/eV厚度/Å导热系数
    /W·m–1·K-1
    饱和吸收强度Is/GW·cm–2三阶极化率
    $ {\rm{Im}}\chi^{(3)} $/esu
    非线性折射率n2/cm2·W–1载流子弛豫
    时间
    Ref.
    graphene03.351600—5300583–8.7 × 10–1510–7200 fs—1 ps[8486]
    TMDs1—26.04—6.9119—112381—590–(0.145—1.38) × 10–1410–121 ps—400 ps[84, 85]
    BP0.3—2.25.24—5.296—89459–7.85 × 10–156.8 × 10–9360 fs—1.36 ps[84, 89, 87]
    MXene$ < 0.2 $298—4601010–13–10–16[82, 88]
    下载: 导出CSV

    表 2  基于二维材料热光效应的全光纤器件总结

    Table 2.  Comparison of all-fiber devices based on two-dimensional material thermo-optic effect.

    全光器件结构二维材料类型耦合形式上升时间下降时间消光比/dB控制效率/$\pi$·mW–1Ref.
    MZIgrapheneMF4.00 ms1.40 ms200.091[101]
    MxeneMF4.10 ms3.55 ms18.530.061[100]
    phosphoreneMF2.50 ms2.10 ms170.029[75]
    boronMF0.48 ms0.69 ms10.50.01329[90]
    WS2MF7.30 ms3.50 ms150.0174[102]
    MIantimoneneMF3.20 ms2.90 ms250.049[103]
    bismutheneMF1.56 ms1.53 ms250.076[104]
    MXeneMF2.30 ms2.10 ms270.034[105]
    grapheneSPTCF55.80 ms15.50 ms70.0102[108]
    PIMoS2TF324.5 μs353.1 μs10NA[106]
    micro-ringgraphenenMF294.7 μs212.2 μs130.115[107]
    MXeneMF306 μs301 μs12.90.196[109]
    注: MF, microfiber. TF, Thin film. SPTCF, side-polished twin-core fiber.
    下载: 导出CSV

    表 3  基于不同二维材料非线性效应的全光器件总结

    Table 3.  Comparison of all-optical devices based on nonlinear effects of different two-dimensional materials.

    非线性效应类型二维材料类型耦合
    形式
    上升时间下降时间消光比/dB调制深度/%控制效率
    π·mW–1
    转换效率/dB调谐范围/nmRef.
    SAgrapheneMF~0~073.08, 79.11, 81.38
    (1310 nm, 1550 nm, 1610 nm)
    [125]
    BPMF~0.2 ns~0.4 ns4.7[116]
    Kerr effectgrapheneMF3 μs100 μs[118]
    bismuthineMF22[123]
    Topological insulatorsMF140.0125[124]
    BPMF260.0081[122]
    antimoneneMF120.0071126
    FWMbismuthineMF17-654[123]
    Topological insulatorsMF-346.4[124]
    BPMF10-603[122]
    antimoneneMF13-655.5[126]
    MXeneMF13-595[127]
    grapheneMF13-595[128]
    注: MF, microfiber. SA, saturable absorption. FWM, four-wave-mixing.
    下载: 导出CSV
  • [1]

    Koos C, Vorreau P, Vallaitis T, et al. 2009 Nat. Photonics 3 216Google Scholar

    [2]

    Willner A E, Khaleghi S, Chitgarha M R, et al. 2014 J. Lightwave Technol. 32 660Google Scholar

    [3]

    Bigo S, Leclerc O, Desurvire E 1997 IEEE J. Sel. Top. Quantum Electron. 3 1208Google Scholar

    [4]

    Slavik R, Parmigiani F, Kakande J, et al. 2010 Nat. Photonics 4 690Google Scholar

    [5]

    Hu X, Wang A, Zeng M, et al. 2016 Sci. Rep.-UK 6 32911Google Scholar

    [6]

    Koos C, Jacome L, Poulton C, et al. 2007 Opt. Express 15 5976Google Scholar

    [7]

    Patel N S, Rauschenbach K A, Hall K L 1996 IEEE Photonics Technol. Lett. 8 1695Google Scholar

    [8]

    Wang J, Kahn J M 2004 IEEE Photonics Technol. Lett. 16 1397Google Scholar

    [9]

    Alloatti L, Palmer R, Diebold S, et al. 2014 Light-Sci. Appl. 3 e173Google Scholar

    [10]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [11]

    Wooten E L, Kissa K M, Yi-Yan A, et al. 2000 IEEE J. Sel. Top. Quantum Electron. 6 69Google Scholar

    [12]

    Wang C, Zhang M, Chen X, et al. 2018 Nature 562 101Google Scholar

    [13]

    Grinblat G, Abdelwahab I, Nielsen M P, et al. 2019 ACS Nano 13 9504Google Scholar

    [14]

    Ono M, Hata M, Tsunekawa M, et al. 2020 Nat. Photonics 14 37Google Scholar

    [15]

    Almeida V R, Barrios C A, Panepucci R R, et al. 2004 Nature 431 1081Google Scholar

    [16]

    Hu X, Jiang P, Ding C, et al. 2008 Nat. Photonics 2 185Google Scholar

    [17]

    Volz T, Reinhard A, Winger M, et al. 2012 Nat. Photonics 6 605Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [21]

    Zhang Y B, Tan Y W, Stormer H L, et al. 2005 Nature 438 201Google Scholar

    [22]

    Stoller M D, Park S, Zhu Y, et al. 2008 Nano Lett. 8 3498Google Scholar

    [23]

    Lee C, Wei X, Kysar J W, et al. 2008 Science 321 385Google Scholar

    [24]

    Nair R R, Blake P, Grigorenko A N, et al. 2008 Science 320 1308Google Scholar

    [25]

    Balandin A A, Ghosh S, Bao W, et al. 2008 Nano Lett. 8 902Google Scholar

    [26]

    Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768Google Scholar

    [27]

    Xia F, Wang H, Xiao D, et al. 2014 Nat. Photonics 8 899Google Scholar

    [28]

    Koppens F H L, Mueller T, Avouris P, et al. 2014 Nat. Nanotechnol 9 780Google Scholar

    [29]

    Cepellotti A, Fugallo G, Paulatto L, et al. 2015 Nat. Commun. 6 6400Google Scholar

    [30]

    Pakdel A, Bando Y, Golberg D 2014 Chem. Soc. Rev. 43 934Google Scholar

    [31]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [32]

    Tan C, Zhang H 2015 Chem. Soc. Rev. 44 2713Google Scholar

    [33]

    Lv R, Robinson J A, Schaak R E, et al. 2015 Accounts Chem. Res. 48 56Google Scholar

    [34]

    Zhi C, Bando Y, Tang C, et al. 2009 Adv. Mater. 21 2889Google Scholar

    [35]

    Zhang J, Chen Y, Wang X 2015 Energy Environ. Sci. 8 3092Google Scholar

    [36]

    Osada M, Sasaki T 2009 J. Mater. Chem. 19 2503Google Scholar

    [37]

    Ma R, Sasaki T 2015 Accounts Chem. Res. 48 136Google Scholar

    [38]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124Google Scholar

    [39]

    Naguib M, Mochalin V N, Barsoum M W, et al. 2014 Adv. Mater. 26 992Google Scholar

    [40]

    Wang C, Wang Y Z, Jiang X T, et al. 2019 Laser Phys. Lett. 16 651076Google Scholar

    [41]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [42]

    Bae S, Kim H, Lee Y, et al. 2010 Nat. Nanotechnol. 5 574Google Scholar

    [43]

    Bao Q, Zhang H, Wang Y, et al. 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [44]

    Song Y, Jang S, Han W, et al. 2010 Appl. Phys. Lett. 96 511225Google Scholar

    [45]

    Tan W D, Su C Y, Knize R J, et al. 2010 Appl. Phys. Lett. 96 311063Google Scholar

    [46]

    Hasan T, Sun Z, Wang F, et al. 2009 Adv. Mater. 21 3874Google Scholar

    [47]

    Sun Z, Hasan T, Torrisi F, et al. 2010 ACS Nano 4 803Google Scholar

    [48]

    Sun D, Divin C, Rioux J, et al. 2010 Nano Lett. 10 1293Google Scholar

    [49]

    Polat E O, Kocabas C 2013 Nano Lett. 13 5851Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, et al. 2011 Nature 474 64Google Scholar

    [51]

    Lee C C, Mohr C, Bethge J, et al. 2012 Opt. Lett. 37 3084Google Scholar

    [52]

    Baylam I, Cizmeciyan M N, Ozharar S, et al. 2014 Opt. Lett. 39 5180Google Scholar

    [53]

    Liu M, Yin X, Zhang X 2012 Nano Lett. 12 1482Google Scholar

    [54]

    Lee E J, Choi S Y, Jeong H, et al. 2015 Nat. Commun. 6 6851Google Scholar

    [55]

    Lee C, Suzuki S, Xie W, et al. 2012 Opt. Express 20 5264Google Scholar

    [56]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [57]

    Luo Z, Wu D, Xu B, et al. 2016 Nanoscale 8 1066Google Scholar

    [58]

    Martinez A, Yamashita S 2012 Appl. Phys. Lett. 101 411184Google Scholar

    [59]

    Li W, Chen B, Meng C, et al. 2014 Nano Lett. 14 955Google Scholar

    [60]

    Gao Y, Shiue R, Gan X, et al. 2015 Nano Lett. 15 2001Google Scholar

    [61]

    Phare C T, Lee Y D, Cardenas J, et al. 2015 Nat. Photonics 9 511Google Scholar

    [62]

    Schall D, Neumaier D, Mohsin M, et al. 2014 ACS Photonics 1 781Google Scholar

    [63]

    Wang F, Zhang Y, Tian C, et al. 2008 Science 320 206Google Scholar

    [64]

    Zanella I, Guerini S, Fagan S B, et al. 2008 Phys. Rev. B 77 734047Google Scholar

    [65]

    Han M Y, Oezyilmaz B, Zhang Y, et al. 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [66]

    Ni Z H, Yu T, Lu Y H, et al. 2008 ACS Nano 2 2301Google Scholar

    [67]

    Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [68]

    Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271Google Scholar

    [69]

    Bridgman P W 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [70]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [71]

    Yuan H, Liu X, Afshinmanesh F, et al. 2015 Nat. Nanotechnol. 10 707Google Scholar

    [72]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [73]

    Wang X, Jones A M, Seyler K L, et al. 2015 Nat. Nanotechnol. 10 517Google Scholar

    [74]

    Li D, Jussila H, Karvonen L, et al. 2015 Sci. Rep.-UK 5 15899Google Scholar

    [75]

    Wang Y, Zhang F, Tang X, et al. 2018 Laser Photonics Rev. 12 1800016Google Scholar

    [76]

    Song Y, Liang Z, Jiang X, et al. 2017 2D Mater. 4 450104Google Scholar

    [77]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [78]

    Jhon Y I, Koo J, Anasori B, et al. 2017 Adv. Mater. 29 1702496Google Scholar

    [79]

    Naguib M, Mashtalir O, Carle J, et al. 2012 ACS Nano 6 1322Google Scholar

    [80]

    Ying Y, Liu Y, Wang X, et al. 2015 ACS Appl. Mater. Interfaces 7 1795Google Scholar

    [81]

    Urbankowski P, Anasori B, Makaryan T, et al. 2016 Nanoscale 8 11385Google Scholar

    [82]

    Jiang X, Liu S, Liang W, et al. 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [83]

    Li R, Zhang L, Shi L, et al. 2017 ACS Nano 11 3752Google Scholar

    [84]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [85]

    Wang K, Feng Y, Chang C, et al. 2014 Nanoscale 6 10530Google Scholar

    [86]

    Demetriou G, Bookey H T, Biancalana F, et al. 2016 Opt. Express 24 13033Google Scholar

    [87]

    Wang K, Szydlowska B M, Wang G, et al. 2016 ACS Nano 10 6923Google Scholar

    [88]

    Ronchi R M, Arantes J T, Santos S F 2019 Ceram. Int. 45 18167Google Scholar

    [89]

    Zheng X, Chen R, Shi G, et al. 2015 Opt. Lett. 40 3480Google Scholar

    [90]

    Guo Q, Wu K, Shao Z, et al. 2019 Adv. Opt. Mater. 7 1900322Google Scholar

    [91]

    Zhou H, Cai Y, Zhang G, et al. 2017 NPJ 2D Mater. Appl. 1 14Google Scholar

    [92]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [93]

    Lee J, Koo J, Jhon Y M, et al. 2014 Opt. Express 22 6165Google Scholar

    [94]

    Sotor J, Sobon G, Macherzynski W, et al. 2014 Laser Phys. Lett. 11 55102Google Scholar

    [95]

    Zeng Z, Yin Z, Huang X, et al. 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [96]

    Aharon E, Albo A, Kalina M, et al. 2006 Adv. Funct. Mater. 16 980Google Scholar

    [97]

    Hernandez Y, Nicolosi V, Lotya M, et al. 2008 Nat. Nanotechnol. 3 563Google Scholar

    [98]

    Xia H, Li H, Lan C, et al. 2014 Opt. Express 22 17341Google Scholar

    [99]

    Reina A, Jia X, Ho J, et al. 2009 Nano Lett. 9 30Google Scholar

    [100]

    Wu Q, Chen S, Wang Y, et al. 2019 Adv. Mater. Technol.-US 4 1800532Google Scholar

    [101]

    Gan X, Zhao C, Wang Y, et al. 2015 Optica 2 468Google Scholar

    [102]

    Wu K, Guo C, Wang H, et al. 2017 Opt. Express 25 17639Google Scholar

    [103]

    Wang Y, Huang W, Wang C, et al. 2019 Laser Photonics Rev. 13 1800313Google Scholar

    [104]

    Wang Y, Huang W, Zhao J, et al. 2019 J. Mater. Chem. C 7 871Google Scholar

    [105]

    Wang C, Wang Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [106]

    Wang Y, Wu K, Chen J 2018 Chin. Opt. Lett. 16 20003Google Scholar

    [107]

    Wang Y, Gan X, Zhao C, et al. 2016 Appl. Phys. Lett. 108 171905Google Scholar

    [108]

    Chu R, Guan C, Bo Y, et al. 2020 Opt. Lett. 45 177Google Scholar

    [109]

    Wu Q, Huang W, Wang Y, et al. 2020 Adv. Opt. Mater. 8 1900977Google Scholar

    [110]

    Xing G, Guo H, Zhang X, et al. 2010 Opt. Express 18 4564Google Scholar

    [111]

    Wu Y, Wu Q, Sun F, et al. 2015 Proc. Natl Acad. Sci. U.S.A. 112 11800Google Scholar

    [112]

    Shao Z, Wu K, Chen J 2020 Chin. Opt. Lett. 18 60603Google Scholar

    [113]

    Shen M, Ruan L, Wang X, et al. 2011 Phys. Rev. A 83 45804Google Scholar

    [114]

    Eliasson B, Liu C S 2016 New J. Phys. 18 53007Google Scholar

    [115]

    Ge Y, Zhu Z, Xu Y, et al. 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [116]

    Zheng J, Tang X, Yang Z, et al. 2017 Adv. Opt. Mater. 5 1700026Google Scholar

    [117]

    FEJER M M, MAGEL G A, JUNDT D H, et al. 1992 IEEE J. Quantum Electron. 28 2631Google Scholar

    [118]

    Yu S, Wu X, Chen K, et al. 2016 Optica 3 541Google Scholar

    [119]

    Wu X, Yu S, Yang H, et al. 2016 Carbon 96 1114Google Scholar

    [120]

    Zhang F, Han S, Liu Y, et al. 2015 Appl. Phys. Lett. 106 91102Google Scholar

    [121]

    Xia F, Farmer D B, Lin Y, et al. 2010 Nano Lett. 10 715Google Scholar

    [122]

    Zheng J, Yang Z, Si C, et al. 2017 ACS Photonics 4 1466Google Scholar

    [123]

    Wang K, Zheng J, Huang H, et al. 2019 Opt. Express 27 16798Google Scholar

    [124]

    Chen S, Miao L, Chen X, et al. 2015 Adv. Opt. Mater. 3 1769Google Scholar

    [125]

    Liao Y, Feng G Y, Zhou H, et al. 2018 IEEE Photonics Technol. Lett. 30 661Google Scholar

    [126]

    Song Y, Chen Y, Jiang X, et al. 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [127]

    Song Y, Chen Y, Jiang X, et al. 2019 Adv. Opt. Mater. 7 1801777Google Scholar

    [128]

    Wu Y, Yao B, Cheng Y, et al. 2014 IEEE Photonics Technol. Lett. 26 249Google Scholar

    [129]

    Liu H, Neal A T, Zhu Z, et al. 2014 ACS Nano 8 4033Google Scholar

    [130]

    Wood J D, Wells S A, Jariwala D, et al. 2014 Nano Lett. 14 6964Google Scholar

    [131]

    Island J O, Steele G A, van der Zant H S J, et al. 2015 2D Mater. 2 11002Google Scholar

    [132]

    Doganov R A, O'Farrell E C T, Koenig S P, et al. 2015 Nat. Commun. 6 6647Google Scholar

    [133]

    Ohtsubo Y, Perfetti L, Goerbig M O, et al. 2013 New J. Phys. 15 33041Google Scholar

    [134]

    Rao S M, Heitz J J F, Roger T, et al. 2014 Opt. Lett. 39 5345Google Scholar

    [135]

    Li X, Cai W, An J, et al. 2009 Science 324 1312Google Scholar

    [136]

    Wu K, Soci C, Shum P P, et al. 2014 Opt. Express 22 295Google Scholar

    [137]

    Wu K, Garcia De Abajo J, Soci C, et al. 2014 Light-Sci. Appl. 3 e147Google Scholar

    [138]

    Rajbenbach H, Fainman Y, Lee S H 1987 Appl. Opt. 26 1024Google Scholar

    [139]

    O'Brien J L 2007 Science 318 1567Google Scholar

    [140]

    Caulfield H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [141]

    Appeltant L, Soriano M C, Van der Sande G, et al. 2011 Nat. Commun. 2 468Google Scholar

    [142]

    Woods D, Naughton T J 2012 Nat. Phys. 8 257Google Scholar

    [143]

    Chung I, Lee B, He J, et al. 2012 Nature 485 486Google Scholar

    [144]

    Lee M M, Teuscher J, Miyasaka T, et al. 2012 Science 338 643Google Scholar

    [145]

    Kim H, Lee C, Im J, et al. 2012 Sci. Rep.-UK 2 591Google Scholar

    [146]

    Dikin D A, Stankovich S, Zimney E J, et al. 2007 Nature 448 457Google Scholar

    [147]

    Sobon G, Sotor J, Jagiello J, et al. 2012 Opt. Express 20 19463Google Scholar

    [148]

    Moore J E 2010 Nature 464 194Google Scholar

    [149]

    Zhang H, Liu C, Qi X, et al. 2009 Nat. Phys. 5 438Google Scholar

    [150]

    Dash A, Palanchoke U, Gely M, et al. 2019 Opt. Express 27 34094Google Scholar

    [151]

    Qiu C, Yang Y, Li C, et al. 2017 Sci. Rep.-UK 7 17046Google Scholar

    [152]

    Gao Y, Zhou W, Sun X, et al. 2017 Opt. Lett. 42 1950Google Scholar

    [153]

    Yuhan Y, Kangkang W, Shan G, et al. 2020 Nanophotonics-Berlin 20190510Google Scholar

    [154]

    Grinblat G, Nielsen M P, Dichtl P, et al. 2019 Sci. Adv. 5 w32626Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [4] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [6] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [9] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [10] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [12] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [14] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [15] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展. 物理学报, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [16] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [17] 刘云凤, 刘彬, 何兴道, 李淑静. 基于六角格子光子晶体波导的高效全光二极管设计. 物理学报, 2016, 65(6): 064207. doi: 10.7498/aps.65.064207
    [18] 任光辉, 陈少武, 曹彤彤. 一种热光可调谐级联微环滤波器的理论分析. 物理学报, 2012, 61(3): 034215. doi: 10.7498/aps.61.034215
    [19] 肖 毅, 郭 旗. 有限宽平板波导中的克尔空间孤子及全光器件的设计. 物理学报, 2008, 57(2): 923-933. doi: 10.7498/aps.57.923
    [20] 李红霞, 吴福全, 范吉阳. 空气隙间隔格兰型棱镜偏光器透射光强扰动的温度效应. 物理学报, 2003, 52(8): 2081-2086. doi: 10.7498/aps.52.2081
计量
  • 文章访问数:  12359
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-06-09
  • 上网日期:  2020-09-22
  • 刊出日期:  2020-09-20

/

返回文章
返回