搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维纳米材料可饱和吸收体的中红外超快光纤激光器

张倩 金鑫鑫 张梦 郑铮

引用本文:
Citation:

基于二维纳米材料可饱和吸收体的中红外超快光纤激光器

张倩, 金鑫鑫, 张梦, 郑铮

Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser

Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng
PDF
HTML
导出引用
  • 以石墨烯为代表的二维纳米材料可饱和吸收体以其独特的非线性光学特性被广泛应用于超快光纤激光器. 本文总结了近年来二维纳米材料作为可饱和吸收体在中红外超快光纤激光器中的研究发展, 介绍了二维纳米材料原子结构、非线性光学特性、可饱和吸收体器件集成方式, 及其在中红外超快光纤激光器中的应用, 重点阐述了基于黑磷可饱和吸收体实现的2 μm飞秒光纤激光器, 并对二维纳米材料可饱和吸收体在中红外超快光纤激光器中的发展与挑战进行了展望.
    The two-dimensional (2D) nanomaterial saturable absorber represented by graphene is widely used in ultrafast fiber lasers due to its unique nonlinear optical properties. In this paper, we summarize the research and development of 2D nanomaterials as saturable absorbers in mid-infrared ultrafast mode-locked fiber lasers in recent years, and introduce the atomic structure and nonlinear optical characteristics of 2D nanomaterials, and saturable absorber device integration methods. The laser performance parameters such as center wavelength, repetition frequency and average output power of the laser are discussed, and the femtosecond fiber laser based on black phosphorus saturable absorber in the middle infrared band is highlighted. Finally, the developments and challenges of 2D materials in mid-infrared pulsed fiber laser are also addressed.
      通信作者: 张梦, mengzhang10@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51778030, 51978024)资助的课题.
      Corresponding author: Zhang Meng, mengzhang10@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51778030, 51978024)
    [1]

    Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571Google Scholar

    [2]

    Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118Google Scholar

    [3]

    Geiser P 2015 Sensors 15 22724Google Scholar

    [4]

    Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556Google Scholar

    [5]

    Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199Google Scholar

    [6]

    Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098Google Scholar

    [7]

    Fuller T A 1986 Laser. Surg. Med. 6 399Google Scholar

    [8]

    Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [9]

    Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910Google Scholar

    [10]

    Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666Google Scholar

    [11]

    Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170Google Scholar

    [12]

    Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855Google Scholar

    [13]

    Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859Google Scholar

    [14]

    Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745Google Scholar

    [15]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [16]

    Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440Google Scholar

    [17]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357Google Scholar

    [18]

    Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933Google Scholar

    [19]

    Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530RGoogle Scholar

    [20]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [21]

    Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109Google Scholar

    [22]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797Google Scholar

    [23]

    Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773Google Scholar

    [24]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [25]

    Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055Google Scholar

    [26]

    Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106Google Scholar

    [27]

    Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865Google Scholar

    [28]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [29]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [30]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [31]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271Google Scholar

    [32]

    Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509Google Scholar

    [33]

    Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482Google Scholar

    [34]

    Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214Google Scholar

    [35]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [36]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [37]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183Google Scholar

    [38]

    Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [39]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [40]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [41]

    Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586Google Scholar

    [42]

    Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503Google Scholar

    [43]

    Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190Google Scholar

    [44]

    Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511Google Scholar

    [45]

    Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349Google Scholar

    [46]

    Guo B 2018 Chin. Opt. Lett. 16 020004Google Scholar

    [47]

    Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492Google Scholar

    [48]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1Google Scholar

    [49]

    Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102Google Scholar

    [50]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260Google Scholar

    [51]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [52]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [53]

    Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611Google Scholar

    [54]

    Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944Google Scholar

    [55]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506Google Scholar

    [56]

    Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077Google Scholar

    [57]

    Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592Google Scholar

    [58]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438Google Scholar

    [59]

    Moore J E 2010 Nature 464 194Google Scholar

    [60]

    Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998Google Scholar

    [61]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706Google Scholar

    [62]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [63]

    Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699Google Scholar

    [64]

    Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874Google Scholar

    [65]

    Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080Google Scholar

    [66]

    Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278Google Scholar

    [67]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [68]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592Google Scholar

    [69]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7Google Scholar

    [70]

    Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209Google Scholar

    [71]

    Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098Google Scholar

    [72]

    Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56Google Scholar

    [73]

    Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224Google Scholar

    [74]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010Google Scholar

    [75]

    Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770Google Scholar

    [76]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [77]

    Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191Google Scholar

    [78]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446Google Scholar

    [79]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339Google Scholar

    [80]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [81]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72Google Scholar

    [82]

    Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968Google Scholar

    [83]

    Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7

  • 图 1  超快脉冲激光器中实体可饱和吸收体研究进展[16]

    Fig. 1.  Development of materials as real saturable absorber (SA) in lasers[16].

    图 2  二维纳米材料原子结构图 (a)石墨烯[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41]

    Fig. 2.  Atomic structures of two-dimensional (2D) materials: (a) Graphene[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41].

    图 3  二维纳米材料制备方法原理图: 自上而下、自下而上、拓扑转化法

    Fig. 3.  Schematic diagram fabrication methods of 2D materials: Top-down, bottom-up methods and Topological transformation.

    图 4  Ni-MOF结构特征图 (a) Ni-MOF SEM图; (b) Ni-MOF AFM图; (c) Ni-MOF拉曼谱[41]

    Fig. 4.  (a) SEM image of the Ni-MOF showing a 2D layer structure; (b) AFM image of the Ni-MOF dissolved in an IPA solution; (c) raman spectrum of the Ni-MOF[41].

    图 5  (a) 双探头平衡探测法装置; (b) 1934 nm激光照射下材料可饱和吸收体数据及其拟合曲线[41]

    Fig. 5.  (a) The setup of balanced twin-detector measurement; (b) the measured saturable absorption data and their corresponding fitting curve under 1934 nm laser irradiation[41].

    图 6  (a)开孔Z-扫描实验装置[64]; (b)基于Z-扫描可饱和吸收特性曲线图[55]

    Fig. 6.  (a) A typical data set from Z-scan experiment of the SA device[64]; (b) the typical shapes of Z-scan measurements[55].

    图 7  二维纳米材料光纤集成: 传输集成法((a)三明治结构材料转移至光纤端面[66]); 倏逝波集成法((b) D型光纤[65]、(c)锥形光纤[41])

    Fig. 7.  Fiber integration with two-dimensional materials: Transmission integration method ((a) sandwiching structure transferring SA on fiber end[66]); evanescent-wave integration method ((b) D-typed fiber[65], (c) tapered fiber[41]).

    图 8  (a)石墨烯脉冲激光器装置图[56]; (b)脉冲自相关图; (c)光谱图; (d) BP脉冲激光器装置图[40]; (e) 脉冲自相关图; (f)光谱图

    Fig. 8.  (a) Setup of graphene based mode-locked fiber laser[56]; (b) autocorrection trace; (c) optical spectrum; (d) setup of the BP mode-locked fiber laser[40]; (e) autocorrelation trace; (f) optical spectrum.

    图 9  基于BP可饱和吸收体色散管理掺铥锁模光纤激光器最短脉冲 (a)激光器实验装置图; (b)锁模脉冲自相关图[83]

    Fig. 9.  The shortest-pulse Tm-doped fiber laser based on BP at 2 μm spectral region: (a) Setup of Tm:fiber mode-locked laser; (b) autocorrelation trace[83].

    表 1  二维纳米材料带隙与载流子弛豫时间总结

    Table 1.  Bandgaps and carrier lifetime of 2D materials.

    2D materialGrapheneTIsTMDsBPMOFs
    Bandgap/eV00.2—0.31—2.00.3—20.85
    Carrier
    lifetime
    Fast: < 200 fs
    Slow: ~1 ps
    Fast: 0.3—2 ps
    Slow: 3—23 ps
    Fast: ~1—3 ps
    Slow: 70—400 ps
    Fast: 360 fs
    Slow: 1.3 ps
    下载: 导出CSV

    表 2  中红外波段各种二维纳米材料可饱和吸收体锁模光纤激光器性能总结

    Table 2.  Summary of mid-infrared mode-locked fiber lasers using 2D material based SAs.

    2D materialFabrication methodLaser typeλ/nmPulse width/psRepetition rate/MHzPower/mWRef.
    GrapheneLPETDF19403.66.462[56]
    GrapheneCVDTDF18841.220.51.35[22]
    GrapheneNPETDF19500.25523.51210[67]
    GrapheneCVDTDF19450.258.8713[68]
    GrapheneCVDEr:ZBLAN28004225.418[69]
    BPMETDF19100.73936.81.5[40]
    BPMEEr:ZBLAN28004224613[72]
    BPSonicationEr:ZBLAN3.53460028.9140[73]
    TMDs-WTe2MSDTDF19151.2518.7239.9[74]
    TIs-Bi2Te3METm/Ho19350.79527.920[27]
    MOFsSolvothermalTDF18821.313.92.87[41]
    下载: 导出CSV

    表 3  基于二维纳米材料可饱和吸收体掺铥/钬超快锁模光纤激光器性能对比

    Table 3.  Output Performance Comparison of reported thulium-doped and holmium-doped fiber lasers mode-locked with nanomaterial SAs

    2D materialFabrication methodLaser typeλ/nmPulse width/fsRepetition rate/MHzSpectral width /nmRef.
    GrapheneCVDTm19402606.469.4[78]
    GrapheneCVDTm1876603416.6[79]
    GrapheneCVDTm194520558.8727.5[68]
    GrapheneHo206019020.9853.6[80]
    TIs-Bi2Te3OpticallyTm/Ho1909126021.53.6[81]
    TIs-Bi2Te3METm/Ho193579527.95.6[27]
    TMDs-WSe2CVDTm1864116011.363.19[61]
    TMDs-MoTe2CVDTm193095214.354.45[60]
    TMDs-MoSe2LPETm/Ho191292018.214.62[82]
    BPMETm191073936.85.8[40]
    BPLPETm188613920.9555.6[83]
    下载: 导出CSV
  • [1]

    Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571Google Scholar

    [2]

    Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118Google Scholar

    [3]

    Geiser P 2015 Sensors 15 22724Google Scholar

    [4]

    Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556Google Scholar

    [5]

    Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199Google Scholar

    [6]

    Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098Google Scholar

    [7]

    Fuller T A 1986 Laser. Surg. Med. 6 399Google Scholar

    [8]

    Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [9]

    Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910Google Scholar

    [10]

    Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666Google Scholar

    [11]

    Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170Google Scholar

    [12]

    Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855Google Scholar

    [13]

    Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859Google Scholar

    [14]

    Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745Google Scholar

    [15]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [16]

    Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440Google Scholar

    [17]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357Google Scholar

    [18]

    Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933Google Scholar

    [19]

    Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530RGoogle Scholar

    [20]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [21]

    Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109Google Scholar

    [22]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797Google Scholar

    [23]

    Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773Google Scholar

    [24]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [25]

    Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055Google Scholar

    [26]

    Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106Google Scholar

    [27]

    Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865Google Scholar

    [28]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [29]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [30]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [31]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271Google Scholar

    [32]

    Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509Google Scholar

    [33]

    Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482Google Scholar

    [34]

    Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214Google Scholar

    [35]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [36]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [37]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183Google Scholar

    [38]

    Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [39]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [40]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [41]

    Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586Google Scholar

    [42]

    Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503Google Scholar

    [43]

    Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190Google Scholar

    [44]

    Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511Google Scholar

    [45]

    Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349Google Scholar

    [46]

    Guo B 2018 Chin. Opt. Lett. 16 020004Google Scholar

    [47]

    Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492Google Scholar

    [48]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1Google Scholar

    [49]

    Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102Google Scholar

    [50]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260Google Scholar

    [51]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [52]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [53]

    Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611Google Scholar

    [54]

    Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944Google Scholar

    [55]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506Google Scholar

    [56]

    Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077Google Scholar

    [57]

    Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592Google Scholar

    [58]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438Google Scholar

    [59]

    Moore J E 2010 Nature 464 194Google Scholar

    [60]

    Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998Google Scholar

    [61]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706Google Scholar

    [62]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [63]

    Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699Google Scholar

    [64]

    Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874Google Scholar

    [65]

    Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080Google Scholar

    [66]

    Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278Google Scholar

    [67]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [68]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592Google Scholar

    [69]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7Google Scholar

    [70]

    Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209Google Scholar

    [71]

    Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098Google Scholar

    [72]

    Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56Google Scholar

    [73]

    Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224Google Scholar

    [74]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010Google Scholar

    [75]

    Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770Google Scholar

    [76]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [77]

    Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191Google Scholar

    [78]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446Google Scholar

    [79]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339Google Scholar

    [80]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [81]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72Google Scholar

    [82]

    Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968Google Scholar

    [83]

    Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7

  • [1] 余学舟, 黄昌保, 吴海信, 胡倩倩, 刘国晋, 李亚, 朱志成, 祁华贝, 倪友保, 王振友. 基于实验参数的Dy3+, Na+: PbGa2S4中红外激光理论研究. 物理学报, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [2] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [3] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [4] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, 2023, 72(22): 224205. doi: 10.7498/aps.72.20230903
    [5] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [6] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [7] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [8] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用. 物理学报, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [9] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [10] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [11] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [12] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [13] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [14] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [15] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [16] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [18] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  11386
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-06-12
  • 上网日期:  2020-09-17
  • 刊出日期:  2020-09-20

/

返回文章
返回