-
With the numerical solution of the time-dependent Schrodinger equation, we theoretically investigate the high-order harmonic emissions generated by the atoms irradiated by the ultrashort lasers with different wavelengths but the same pondermotive energy. As the driving-laser wavelength increases, the intensity of the high-harmonic emission decreases. Comparing with the harmonic spectra of atoms driven by a 1000-nm-wavelength laser pulse, a new peak structure appears in the spectra of atoms driven by a 5000-nm-wavelength laser wavelength. It is shown by the time-frequency analysis of the harmonic emission, the time-dependent evolution of the electron density, and the time-dependent population analysis of the eigenstate, that the physical mechanism behind the new peak appearing in the harmonic spectra is the interference between the harmonic emission generated by the electrons ionized out of the excited atoms returning to the parent ions and the harmonic emissions resulting from the ground state ionization.
-
Keywords:
- higher harmonic generation /
- mid-infrared laser /
- attosecond pulse
[1] Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar
[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[3] Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar
[4] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar
[5] Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar
[6] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar
[7] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar
[8] Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar
[9] Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar
[10] Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar
[11] Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar
[12] Marangos J P 2016 J. Phys. B 49 132001Google Scholar
[13] Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar
[14] Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677
[15] Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar
[16] Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar
[17] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar
[18] Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar
[19] Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar
[20] Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar
[21] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar
[22] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar
[23] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar
[24] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar
[25] Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar
[26] Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar
[27] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509
[28] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar
[29] Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar
[30] Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar
[31] Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar
[32] Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar
[33] Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar
[34] Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar
[35] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar
[36] Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar
[37] Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar
[38] Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar
[39] Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar
[40] Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar
[41] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar
[42] Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar
[43] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168
[44] Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar
[45] Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342
[46] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar
[47] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar
[48] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537
[49] Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar
[50] Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar
[51] Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar
-
-
[1] Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar
[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[3] Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar
[4] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar
[5] Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar
[6] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar
[7] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar
[8] Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar
[9] Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar
[10] Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar
[11] Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar
[12] Marangos J P 2016 J. Phys. B 49 132001Google Scholar
[13] Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar
[14] Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677
[15] Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar
[16] Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar
[17] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar
[18] Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar
[19] Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar
[20] Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar
[21] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar
[22] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar
[23] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar
[24] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar
[25] Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar
[26] Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar
[27] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509
[28] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar
[29] Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar
[30] Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar
[31] Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar
[32] Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar
[33] Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar
[34] Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar
[35] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar
[36] Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar
[37] Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar
[38] Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar
[39] Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar
[40] Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar
[41] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar
[42] Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar
[43] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168
[44] Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar
[45] Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342
[46] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar
[47] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar
[48] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537
[49] Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar
[50] Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar
[51] Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar
计量
- 文章访问数: 4531
- PDF下载量: 137
- 被引次数: 0