搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展

徐新荣 仲丛林 张铱 刘峰 王少义 谭放 张玉雪 周维民 乔宾

引用本文:
Citation:

强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展

徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾

Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma

Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin
PDF
HTML
导出引用
  • 对超快过程的探测和控制决定了人类在微观层面认识和改造物质世界的能力. 阿秒光源可完成对组成物质的电子运动及其关联效应进行超高时空分辨的探测和操控, 为人类认识微观世界提供了全新手段, 被认为是激光科学史上最重要的里程碑之一. 世界主要科技强国都将阿秒科学列为未来10年重要的科技发展方向. 利用强激光与物质相互作用产生高次谐波是突破飞秒极限实现高亮度阿秒脉冲辐射的重要方案之一, 成为了近年来激光等离子体领域的研究热点. 本文聚焦强激光与等离子体相互作用中的高次谐波和阿秒脉冲辐射, 主要介绍其产生机制、研究进展和前沿应用, 并对未来的发展趋势和创新突破进行展望.
    The realizing of the detection and control of ultrafast process conduces to understanding and remoulding the physical world at a microcosm level. The attosecond light source with attosecond temporal resolution and nanometer spatial resolution can realize real-time detection and manipulation of the atomic-scale electronic dynamics and relevant effects of the substances. Therefore, attosecond science is considered as one of the most important milestones in the history of laser science. and has been listed as an important scientific and technological development direction in the coming 10 years. High-order harmonic generation (HHG) from intense laser-matter interaction is one of the most important routes to breaking through the femtosecond limit and achieving brilliant attosecond pulse radiations, and thus having aroused great interest in recent years. After more than 20-year development, the research about attosecond pulse generation by laser-gas interaction has reached a mature stage. This method produces the shortest isolated pulse in the world to date, with a pulse width being only 43 as. However, this method based on ionization-acceleration-combination encounters inevitable difficulties in pursuing the relativistically intense attosecond pulses and the highest possible photon energy. Quite a lot of studies have proved that the HHG efficiency from laser-plasma interaction can be a few orders of magnitude higher than that in gaseous media, which makes it possible to produce pulses with shorter pulse width and higher photon energy. In this article, we introduce the main generation mechanisms, research progress and frontier applications of HHG through the laser-plasma interaction process. In Section 2, we introduce the HHG generation mechanisms, including coherent wake emission, which is used to describe the HHG process driven by a nonrelativistic laser; relativistic oscillating mirror, which can well explain most of HHG processes generated from plasma-vacuum interface in relativistic regime; coherent synchrotron emission, which is suited to explain the HHG synchronously emitted from isolated electron sheets. The research progress is summarized in Section 3 from the aspects of radiation efficiency, polarization characteristics, phase characteristics, generation and diagnosis of isolated attosecond pulses, etc. Frontier applications of these ultra-broadband intense attosecond pulses are presented in the last section, such as the study of electronic dynamics, process, coherent diffraction imaging, diagnosis of extreme states of matter, the generation of extremely intense fields, etc. Finally, an outlook on the future development trends and innovation breakthroughs is also presented.
      通信作者: 乔宾, bqiao@pku.edu.cn
    • 基金项目: 国防基础核科学挑战计划(批准号: TZ2018005)、国家自然科学基金(批准号: 11825502, 11921006, 12004433)、国家自然科学基金-中国工程物理研究院联合基金(批准号: U1630246)、中科院先导基金(批准号: XDA25050900)、国家重点研发计划(批准号: 2016YFA0401100)、湖南省自然科学基金(批准号: 2020JJ5649) 和国防科技大学科研计划项目(批准号: ZK19-12)资助的课题
      Corresponding author: Qiao Bin, bqiao@pku.edu.cn
    • Funds: Project supported by the Science Challenge Project (Grant No. TZ2018005), the National Natural Science Foundation of China (Grant Nos. 11825502, 11921006, 12004433), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630246), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050900), the National Key R&D Program of China (Grant No. 2016YFA0401100), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5649), and the Research Project of National University of Defense Technology, China (Grant No. ZK19-12).
    [1]

    Zewail A H 2000 J. Phys. Chem 104 5660Google Scholar

    [2]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [3]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Zrabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [5]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [7]

    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [8]

    Chini M, Zhao K, Chang Z H 2014 Nat. Photonics 8 178Google Scholar

    [9]

    Reduzzi M, Carpeggiani P, Kuhn S, Calegari F, Nisoli M, Stagira S, Vozzi C, Dombi P, Kahaly S, Tzallas P, Charalambidis D, Varju K, Osvay K, Sansone G 2015 J. Electron. Spectrosc. Relat. Phenom. 204 257Google Scholar

    [10]

    Burnett N, Baldis H, Richardson M, Enright G 1977 Appl. Phys. Lett. 31 172Google Scholar

    [11]

    Carman R L, Forslund D W, Indel J M K 1981 Phys. Rev. Lett. 46 29Google Scholar

    [12]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004Google Scholar

    [13]

    Lichters R, Meyer-ter Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425Google Scholar

    [14]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003Google Scholar

    [15]

    Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Reau F, D’Oliveira P, Audebert P, Marjoribanks R, Martin P H 2007 Nat. Phys. 3 424Google Scholar

    [16]

    Varjú K, Mairesse Y, Carre B, Gaarde M B, Johnsson P, Kazamias S, Lopez-Martens R, Mauritsson J, Schafer K J, Balcou P H, L’Huillier A, Salieres P 2005 J. Mod. Opt. 52 379Google Scholar

    [17]

    Wilks S C, Kruer W, Mori W 1993 IEEE Trans. Plasma Sci. 21 120Google Scholar

    [18]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745Google Scholar

    [19]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2004 Phys. Rev. Lett. 93 115002Google Scholar

    [20]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wei M S, Krushelnick K, Tatarakis M, Vakakis N, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456Google Scholar

    [21]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404Google Scholar

    [22]

    An der Brügge D, Pukhov A 2010 Phys. Plasmas 17 033110Google Scholar

    [23]

    Cousens S, Reville B, Dromey B, Zepf M 2016 Phys. Rev. Lett. 116 083901Google Scholar

    [24]

    Dromey B, Rykovanov S, Yeung M, Hörlein R, Jung D, Gautier D, Dzelzainis T, Kiefer D, Palaniyppan S, Shah R 2012 Nat. Phys. 8 804Google Scholar

    [25]

    Gonoskov A A, Korzhimanov A V, Kim A V, Marklund M, Sergeev A M 2011 Phys. Rev. E 84 046403Google Scholar

    [26]

    Pirozhkov A S, Bulanov S V, Esirkepov T Z, Mori M, Sagisaka A, Daido H 2006 Phys. Plasmas 13 013107Google Scholar

    [27]

    Kulagin V V, Cherepenin V A, Hur M S, Suk H 2007 Phys. Rev. Lett. 99 124801Google Scholar

    [28]

    Zhang Y X, Qiao B, Xu X R, Chang H X, Lu H Y, Zhou C T, Zhang H, Zhu S P, Zepf M, He X T 2017 Opt. Express 25 23Google Scholar

    [29]

    Thaury C, Quéré F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 213001Google Scholar

    [30]

    Edwards M R, Mikhailova J M 2020 Sci. Rep. 10 5154Google Scholar

    [31]

    Tarasevitch A, Lobov K, Wünsche C, von der Linde D 2007 Phys. Rev. Lett. 98 103902Google Scholar

    [32]

    Rödel C, an der Brügge D, J Bierbach, Yeung M, Hahn T, Dromey B, Herzer S, Fuchs S, Pour A G, Eckner E, Behmke M, Cerchez M, Jäckel O, Hemmers D, Toncian T, Kaluza M C, Belyanin A, Pretzler G, Willi O, Pukhov A, Zepf M, Paulus G G 2012 Phys. Rev. Lett. 109 125002Google Scholar

    [33]

    Dollar F, Cummings P, Chvykov V, Willingale L, Vargas M, Yanovsky V, Zulick C, Maksimchuk A, Thomas A G, Krushelnick K 2013 Phys. Rev. Lett. 110 175002Google Scholar

    [34]

    Leshchenko V E, Kessel A, Jahn O, Krüger M, Münzer A, Trushin S A, Veisz L, Major Z, Karsch S 2019 Light Sci. Appl. 8 1Google Scholar

    [35]

    Gao J, Li B, Liu F, Cai H, Chen M, Yuan X, Ge X, Chen L, Sheng Z, Zhang J 2019 Phys. Plasmas 26 103102Google Scholar

    [36]

    Li B Y, Liu F, Chen M, Chen Z Y, Yuan X H, Weng S M, Jin T, Rykovanov S G, Wang J W, Sheng Z M, Zhang J 2019 Phys. Rev. E 100 053207Google Scholar

    [37]

    Edwards M R, Mikhailova J M 2016 Phys. Rev. Lett. 117 125001Google Scholar

    [38]

    Xu X R, Qiao B, Yu T, Yin Y, Zhuo H, Liu K, Xie D, Zou D, Wang W 2019 New J. Phys. 21 103013Google Scholar

    [39]

    Zhang Y, Rykovanov S, Shi M, Zhong C, He X, Qiao B, Zepf M 2020 Phys. Rev. Lett. 124 114802Google Scholar

    [40]

    Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105Google Scholar

    [41]

    Cerchez M, Giesecke A, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003Google Scholar

    [42]

    Ji L L, Shen B, Zhang X, Wen M, Xia C, Wang W, Xu J, Yu Y, Yu M, Xu Z 2011 Phys. Plasmas 18 083104Google Scholar

    [43]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515Google Scholar

    [44]

    Zhong C L, Qiao B, Xu X R, Zhang Y X, Li X B, Zhang Y, Zhou C T, Zhu S P, He X T 2020 Phys. Rev. A 101 053814Google Scholar

    [45]

    Zhang X M, Shen B, Shi Y, Wang X, Zhang L, Wang W, Xu J, Yi L, Xu Z 2015 Phys. Rev. Lett. 114 173901Google Scholar

    [46]

    Denoeud A, Chopineau L, Leblanc A, Quéré F 2017 Phys. Rev. Lett. 118 033902Google Scholar

    [47]

    Wang J W, Zepf M, Rykovanov S 2019 Nat. Commun. 10 1Google Scholar

    [48]

    Nomura Y, Hörlein R, Tzallas P, Dromey B, Rykovanov S, Major Z, Osterhoff J, Karsch S, Veisz L, Zepf M 2009 Nat. Phys. 5 124Google Scholar

    [49]

    Quéré F, Thaury C, Geindre J P, Bonnaud G, Monot P, Martin P 2008 Phys. Rev. Lett. 100 095004Google Scholar

    [50]

    Hörlein R, Rykovanov S G, Dromey B, Nomura Y, Adams D, Geissler M, Zepf M, Krausz F, Tsakiris G D 2009 Eur. Phys. J. D 55 475Google Scholar

    [51]

    Gao J, Li B, Liu F, Chen Z Y, Chen M, Ge X, Yuan X, Chen L, Sheng Z, Zhang J 2020 Phys. Rev. E 101 033202Google Scholar

    [52]

    Heissler P, Hörlein R, Mikhailova J M, Waldecker L, Tzallas P, Buck A, Schmid K, Sears C, Krausz F, Veisz L 2012 Phys. Rev. Lett. 108 235003Google Scholar

    [53]

    Rykovanov S G, Geissler M, Meyer-ter-Vehn J, Tsakiris G D 2008 New J. Phys. 10 025025Google Scholar

    [54]

    Yeung M, Dromey B, Cousens S, Dzelzainis T, Kiefer D, Schreiber J, Bin J, Ma W, Kreuzer C, Meyer-ter-Vehn J 2014 Phys. Rev. Lett. 112 123902Google Scholar

    [55]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572Google Scholar

    [56]

    Naumova N M, Nees J A, Sokolov I V, Hou B, Mourou G A 2004 Phys. Rev. Lett. 92 063902Google Scholar

    [57]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [58]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [59]

    Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau J P, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T, Lopez-Martens R 2020 Light Sci. Appl. 9 1Google Scholar

    [60]

    Kessel A, Leshchenko V E, Jahn O, Krüger M, Münzer A, Schwarz A, Pervak V, Trubetskov M, Trushin S A, Krausz F, Major Z, Karsch S 2018 Optica 5 434

    [61]

    Chen Z Y 2018 Opt. Lett. 43 2114Google Scholar

    [62]

    Xu X R, Zhang Y X, Zhang H, Lu H Y, Zhou W M, Zhou C T, Dromey B, Zhu S P, Zepf M, He X T, Bin Q 2020 Optica 7 355Google Scholar

    [63]

    Xu X R, Qiao B, Chang H X, Zhang Y X, Zhang H, Zhong C L, Zhou C T, Zhu S P, He X T 2018 Plasma Phys. Controlled Fusion 60 045005Google Scholar

    [64]

    Orfanos I, Makos I, Liontos I, Skantzakis E, F org B, Charalambidis D, Tzallas P 2019 APL Photonics 4 080901Google Scholar

    [65]

    Ishikawa K L, Midorikawa K 2005 Phys. Rev. A 72 013407Google Scholar

    [66]

    Orfanos I, Makos I, Liontos I, Skantzakis E, Major B, Nayak A, Dumergue M, Kühn S, Kahaly S, Varju K, Sansone G, Witzel B, Kalpouzos C, Nikolopoulos L A A, Tzallas P, Charalambidis D 2020 J. Phys. Photonics 2 042003Google Scholar

    [67]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [68]

    Ravasio A, Gauthier D, Maia F, Billon M, Caumes J, Garzella D, Géléoc M, Gobert O, Hergott J F, Pena A M, Perez H, Carré B, Bourhis E, Gierak J, Madouri A, Mailly D, Schiedt B, Fajardo M, Gautier J, Zeitoun P, Bucksbaum P H, Hajdu J, Merdji H 2009 Phys. Rev. Lett. 103 028104Google Scholar

    [69]

    Malvache A, Borot A, Quéré F, Lopez-Martens R 2013 Phys. Rev. E 87 035101

    [70]

    Kormin D, Borot A, Ma G, Dallari W, Bergues B, Aladi M, Földes I B, Veisz L 2018 Nat. Commun. 9 1Google Scholar

    [71]

    Meyer-ter-Vehn J, Honrubia J, Geissler M, Karsch S, Krausz F, Tsakiris G, Witte K 2005 Plasma Phys. Controlled Fusion 47 B807Google Scholar

    [72]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [73]

    Hörlein R, Nomura Y, Osterhoff J, Major Z, Karsch S, Krausz F, Tsakiris G D 2008 Plasma Phys. Controlled Fusion 50 124002Google Scholar

    [74]

    Ramunno L, Jungreuthmayer C, Reinholz H, Brabec T 2006 J. Phys. B 39 4923Google Scholar

    [75]

    Saalmann U, Georgescu I, Rost J M 2008 New J. Phys. 10 025014Google Scholar

    [76]

    Rehr J J, Albers R C 2000 Rev. Mod. Phys. 72 621Google Scholar

    [77]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [78]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2005 Phys. Rev. Lett. 94 103903Google Scholar

    [79]

    Vincenti H 2019 Phys. Rev. Lett. 123 105001Google Scholar

  • 图 1  自然物质世界的典型时间跨越尺度: 从核子运动特征周期10–24 s到宇宙年龄1018 s

    Fig. 1.  Typical time spans in the natural physical world: From 10–24 s for the characteristic period of nuclear motion to 1018 s for the age of the universe.

    图 2  (a)强激光稠密等离子体相互作用驱动高次谐波辐射的物理方案; (b)—(d) 相关的三种主要辐射机制示意图 (b)相干尾场辐射(coherent wake emission, CWE), (c)相对论振荡镜(relativistically oscillating mirror, ROM), (d)相干同步辐射(coherent synchrotron emission, CSE)

    Fig. 2.  (a) Schematic for high-order harmonic generation from intense laser interaction with overdense plasmas. (b)–(d) Schematics for three main radiation mechanisms: (b) Coherent wake emission (CWE); (c) relativistically oscillating mirror (ROM); (d) coherent synchrotron emission (CSE).

    图 3  一维粒子模拟中获得的典型CWE机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 绿线为Brunel电子轨迹, 紫色部分为对应时刻产生的频率介于3—15倍频之间的高次谐波; (b) 反射光的频谱分布. 这里采用强度为$3.4\times10^{17}\;{\rm{W/cm^2}}$的800 nm激光以45°角斜入射预等离子体尺度为$0.05\lambda$, 最大电子密度为$200 n_{\rm c}$的等离子体靶

    Fig. 3.  Typical harmonic radiation process and radiation characteristics of CWE mechanism in one-dimensional (1D) particle-in-cell (PIC) simulation. (a) Temporal evolution of electron density. The green lines and the purple part are the trajectories of Brunel electrons and the high-order harmonic of the corresponding time with frequency between 3ω – 15ω respectively. (b) The spectrum of the reflected laser. Here, a laser with intensity of $3.4\times10^{17}\;{\rm{W/cm^2}}$ and wavelength $\lambda=800\;{\rm{nm}}$ is incident on a plasma target with preplasma scale length of $0.05\lambda$ and the maximum electron density of $200 n_{\rm c}$ at an angle of 45°.

    图 4  一维粒子模拟中获得的典型ROM机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 蓝色部分为对应时刻产生的频率介于15—150倍频之间的高次谐波; (b)反射光的频谱分布, 红色虚线为理论预测的标度率$I_n\propto n^{-8/3}$. 这里强度为$7.7\times10^{21}\;{\rm{W/cm^2}}$的800 nm激光正入射初始电子密度为$250 n_{\rm c}$的等离子体靶, 靶表面无预等离子体

    Fig. 4.  Typical harmonic radiation process and radiation characteristics of ROM mechanism from 1D PIC simulation: (a) Temporal evolution of electron density, and the bule part is the high-order harmonic of the corresponding time with frequency between $15\omega–150\omega$; (b) spectrum of the reflected laser, and the dashed red line is the prediction of theory $I(\omega)\propto\omega^{-8/3}$. Here, the incident laser iradiates the target normally, the intensity and wavelength of which are $7.7\times10^{21}\;{\rm{W/cm^2}}$ and 800 nm respectively. The electron density of the target is $250 n_{\rm c}$ and there is no preplasma.

    图 5  典型CSE机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 蓝色部分为对应时刻产生的频率介于15—150倍频之间的高次谐波; (b)反射光的频谱分布, 红色虚线为理论预测的标度率$I_n\propto n^{-4/3}$. 这里强度为$7.7\;\times $$ 10^{21}\;{\rm{W/cm^2}}$的800 nm激光以$63^{\circ}$角斜入射预等离子体尺度为$0.033\lambda$, 最大电子密度为$95 n_{\rm c}$的等离子体靶

    Fig. 5.  Typical harmonic radiation process and radiation characteristics of CSE mechanism. (a) Temporal evolution of electron density, and the bule part is the high-order harmonic of the corresponding time with frequency between $15\omega– 150\omega$; (b) spectrum of the reflected laser, and the dashed red line is the prediction of theory $I(\omega)\propto\omega^{-4/3}$. Here, a laser with intensity of $7.7\times10^{21}\;{\rm{W/cm^2}}$ is incident on a plasma target with preplasma scale length of $0.033\lambda$ and the maximum electron density of $95 n_{\rm c}$ at an angle of $63^{\circ}$. Here $\lambda=800 \;{\rm{nm}}$ is the wavelength of lasers.

    表 1  谐波偏振的选择定则

    Table 1.  Selection rules for polarization of harmonics

    入射激光偏振方向 奇次谐波 偶次谐波
    P P P
    S S P
    正入射线偏振L L
    正入射圆偏振C
    注: P, S分别表示P极化和S极化激光, L表示线偏振光, C表示圆偏振光.
    下载: 导出CSV
  • [1]

    Zewail A H 2000 J. Phys. Chem 104 5660Google Scholar

    [2]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [3]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Zrabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [5]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [7]

    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [8]

    Chini M, Zhao K, Chang Z H 2014 Nat. Photonics 8 178Google Scholar

    [9]

    Reduzzi M, Carpeggiani P, Kuhn S, Calegari F, Nisoli M, Stagira S, Vozzi C, Dombi P, Kahaly S, Tzallas P, Charalambidis D, Varju K, Osvay K, Sansone G 2015 J. Electron. Spectrosc. Relat. Phenom. 204 257Google Scholar

    [10]

    Burnett N, Baldis H, Richardson M, Enright G 1977 Appl. Phys. Lett. 31 172Google Scholar

    [11]

    Carman R L, Forslund D W, Indel J M K 1981 Phys. Rev. Lett. 46 29Google Scholar

    [12]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004Google Scholar

    [13]

    Lichters R, Meyer-ter Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425Google Scholar

    [14]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003Google Scholar

    [15]

    Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Reau F, D’Oliveira P, Audebert P, Marjoribanks R, Martin P H 2007 Nat. Phys. 3 424Google Scholar

    [16]

    Varjú K, Mairesse Y, Carre B, Gaarde M B, Johnsson P, Kazamias S, Lopez-Martens R, Mauritsson J, Schafer K J, Balcou P H, L’Huillier A, Salieres P 2005 J. Mod. Opt. 52 379Google Scholar

    [17]

    Wilks S C, Kruer W, Mori W 1993 IEEE Trans. Plasma Sci. 21 120Google Scholar

    [18]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745Google Scholar

    [19]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2004 Phys. Rev. Lett. 93 115002Google Scholar

    [20]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wei M S, Krushelnick K, Tatarakis M, Vakakis N, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456Google Scholar

    [21]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 046404Google Scholar

    [22]

    An der Brügge D, Pukhov A 2010 Phys. Plasmas 17 033110Google Scholar

    [23]

    Cousens S, Reville B, Dromey B, Zepf M 2016 Phys. Rev. Lett. 116 083901Google Scholar

    [24]

    Dromey B, Rykovanov S, Yeung M, Hörlein R, Jung D, Gautier D, Dzelzainis T, Kiefer D, Palaniyppan S, Shah R 2012 Nat. Phys. 8 804Google Scholar

    [25]

    Gonoskov A A, Korzhimanov A V, Kim A V, Marklund M, Sergeev A M 2011 Phys. Rev. E 84 046403Google Scholar

    [26]

    Pirozhkov A S, Bulanov S V, Esirkepov T Z, Mori M, Sagisaka A, Daido H 2006 Phys. Plasmas 13 013107Google Scholar

    [27]

    Kulagin V V, Cherepenin V A, Hur M S, Suk H 2007 Phys. Rev. Lett. 99 124801Google Scholar

    [28]

    Zhang Y X, Qiao B, Xu X R, Chang H X, Lu H Y, Zhou C T, Zhang H, Zhu S P, Zepf M, He X T 2017 Opt. Express 25 23Google Scholar

    [29]

    Thaury C, Quéré F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 213001Google Scholar

    [30]

    Edwards M R, Mikhailova J M 2020 Sci. Rep. 10 5154Google Scholar

    [31]

    Tarasevitch A, Lobov K, Wünsche C, von der Linde D 2007 Phys. Rev. Lett. 98 103902Google Scholar

    [32]

    Rödel C, an der Brügge D, J Bierbach, Yeung M, Hahn T, Dromey B, Herzer S, Fuchs S, Pour A G, Eckner E, Behmke M, Cerchez M, Jäckel O, Hemmers D, Toncian T, Kaluza M C, Belyanin A, Pretzler G, Willi O, Pukhov A, Zepf M, Paulus G G 2012 Phys. Rev. Lett. 109 125002Google Scholar

    [33]

    Dollar F, Cummings P, Chvykov V, Willingale L, Vargas M, Yanovsky V, Zulick C, Maksimchuk A, Thomas A G, Krushelnick K 2013 Phys. Rev. Lett. 110 175002Google Scholar

    [34]

    Leshchenko V E, Kessel A, Jahn O, Krüger M, Münzer A, Trushin S A, Veisz L, Major Z, Karsch S 2019 Light Sci. Appl. 8 1Google Scholar

    [35]

    Gao J, Li B, Liu F, Cai H, Chen M, Yuan X, Ge X, Chen L, Sheng Z, Zhang J 2019 Phys. Plasmas 26 103102Google Scholar

    [36]

    Li B Y, Liu F, Chen M, Chen Z Y, Yuan X H, Weng S M, Jin T, Rykovanov S G, Wang J W, Sheng Z M, Zhang J 2019 Phys. Rev. E 100 053207Google Scholar

    [37]

    Edwards M R, Mikhailova J M 2016 Phys. Rev. Lett. 117 125001Google Scholar

    [38]

    Xu X R, Qiao B, Yu T, Yin Y, Zhuo H, Liu K, Xie D, Zou D, Wang W 2019 New J. Phys. 21 103013Google Scholar

    [39]

    Zhang Y, Rykovanov S, Shi M, Zhong C, He X, Qiao B, Zepf M 2020 Phys. Rev. Lett. 124 114802Google Scholar

    [40]

    Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105Google Scholar

    [41]

    Cerchez M, Giesecke A, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003Google Scholar

    [42]

    Ji L L, Shen B, Zhang X, Wen M, Xia C, Wang W, Xu J, Yu Y, Yu M, Xu Z 2011 Phys. Plasmas 18 083104Google Scholar

    [43]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515Google Scholar

    [44]

    Zhong C L, Qiao B, Xu X R, Zhang Y X, Li X B, Zhang Y, Zhou C T, Zhu S P, He X T 2020 Phys. Rev. A 101 053814Google Scholar

    [45]

    Zhang X M, Shen B, Shi Y, Wang X, Zhang L, Wang W, Xu J, Yi L, Xu Z 2015 Phys. Rev. Lett. 114 173901Google Scholar

    [46]

    Denoeud A, Chopineau L, Leblanc A, Quéré F 2017 Phys. Rev. Lett. 118 033902Google Scholar

    [47]

    Wang J W, Zepf M, Rykovanov S 2019 Nat. Commun. 10 1Google Scholar

    [48]

    Nomura Y, Hörlein R, Tzallas P, Dromey B, Rykovanov S, Major Z, Osterhoff J, Karsch S, Veisz L, Zepf M 2009 Nat. Phys. 5 124Google Scholar

    [49]

    Quéré F, Thaury C, Geindre J P, Bonnaud G, Monot P, Martin P 2008 Phys. Rev. Lett. 100 095004Google Scholar

    [50]

    Hörlein R, Rykovanov S G, Dromey B, Nomura Y, Adams D, Geissler M, Zepf M, Krausz F, Tsakiris G D 2009 Eur. Phys. J. D 55 475Google Scholar

    [51]

    Gao J, Li B, Liu F, Chen Z Y, Chen M, Ge X, Yuan X, Chen L, Sheng Z, Zhang J 2020 Phys. Rev. E 101 033202Google Scholar

    [52]

    Heissler P, Hörlein R, Mikhailova J M, Waldecker L, Tzallas P, Buck A, Schmid K, Sears C, Krausz F, Veisz L 2012 Phys. Rev. Lett. 108 235003Google Scholar

    [53]

    Rykovanov S G, Geissler M, Meyer-ter-Vehn J, Tsakiris G D 2008 New J. Phys. 10 025025Google Scholar

    [54]

    Yeung M, Dromey B, Cousens S, Dzelzainis T, Kiefer D, Schreiber J, Bin J, Ma W, Kreuzer C, Meyer-ter-Vehn J 2014 Phys. Rev. Lett. 112 123902Google Scholar

    [55]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572Google Scholar

    [56]

    Naumova N M, Nees J A, Sokolov I V, Hou B, Mourou G A 2004 Phys. Rev. Lett. 92 063902Google Scholar

    [57]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [58]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [59]

    Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau J P, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T, Lopez-Martens R 2020 Light Sci. Appl. 9 1Google Scholar

    [60]

    Kessel A, Leshchenko V E, Jahn O, Krüger M, Münzer A, Schwarz A, Pervak V, Trubetskov M, Trushin S A, Krausz F, Major Z, Karsch S 2018 Optica 5 434

    [61]

    Chen Z Y 2018 Opt. Lett. 43 2114Google Scholar

    [62]

    Xu X R, Zhang Y X, Zhang H, Lu H Y, Zhou W M, Zhou C T, Dromey B, Zhu S P, Zepf M, He X T, Bin Q 2020 Optica 7 355Google Scholar

    [63]

    Xu X R, Qiao B, Chang H X, Zhang Y X, Zhang H, Zhong C L, Zhou C T, Zhu S P, He X T 2018 Plasma Phys. Controlled Fusion 60 045005Google Scholar

    [64]

    Orfanos I, Makos I, Liontos I, Skantzakis E, F org B, Charalambidis D, Tzallas P 2019 APL Photonics 4 080901Google Scholar

    [65]

    Ishikawa K L, Midorikawa K 2005 Phys. Rev. A 72 013407Google Scholar

    [66]

    Orfanos I, Makos I, Liontos I, Skantzakis E, Major B, Nayak A, Dumergue M, Kühn S, Kahaly S, Varju K, Sansone G, Witzel B, Kalpouzos C, Nikolopoulos L A A, Tzallas P, Charalambidis D 2020 J. Phys. Photonics 2 042003Google Scholar

    [67]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [68]

    Ravasio A, Gauthier D, Maia F, Billon M, Caumes J, Garzella D, Géléoc M, Gobert O, Hergott J F, Pena A M, Perez H, Carré B, Bourhis E, Gierak J, Madouri A, Mailly D, Schiedt B, Fajardo M, Gautier J, Zeitoun P, Bucksbaum P H, Hajdu J, Merdji H 2009 Phys. Rev. Lett. 103 028104Google Scholar

    [69]

    Malvache A, Borot A, Quéré F, Lopez-Martens R 2013 Phys. Rev. E 87 035101

    [70]

    Kormin D, Borot A, Ma G, Dallari W, Bergues B, Aladi M, Földes I B, Veisz L 2018 Nat. Commun. 9 1Google Scholar

    [71]

    Meyer-ter-Vehn J, Honrubia J, Geissler M, Karsch S, Krausz F, Tsakiris G, Witte K 2005 Plasma Phys. Controlled Fusion 47 B807Google Scholar

    [72]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [73]

    Hörlein R, Nomura Y, Osterhoff J, Major Z, Karsch S, Krausz F, Tsakiris G D 2008 Plasma Phys. Controlled Fusion 50 124002Google Scholar

    [74]

    Ramunno L, Jungreuthmayer C, Reinholz H, Brabec T 2006 J. Phys. B 39 4923Google Scholar

    [75]

    Saalmann U, Georgescu I, Rost J M 2008 New J. Phys. 10 025014Google Scholar

    [76]

    Rehr J J, Albers R C 2000 Rev. Mod. Phys. 72 621Google Scholar

    [77]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [78]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2005 Phys. Rev. Lett. 94 103903Google Scholar

    [79]

    Vincenti H 2019 Phys. Rev. Lett. 123 105001Google Scholar

  • [1] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展. 物理学报, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [2] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [5] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [6] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [7] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [8] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [9] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [10] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [11] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [12] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [13] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [14] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [15] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [16] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [17] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [18] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [19] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  11042
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 修回日期:  2021-03-28
  • 上网日期:  2021-04-14
  • 刊出日期:  2021-04-20

/

返回文章
返回