搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全光汤姆孙散射

闫文超 朱常青 王进光 冯杰 李毅飞 谭军豪 陈黎明

引用本文:
Citation:

全光汤姆孙散射

闫文超, 朱常青, 王进光, 冯杰, 李毅飞, 谭军豪, 陈黎明

All-optical Thomson scattering

Yan Wen-Chao, Zhu Chang-Qing, Wang Jin-Guang, Feng Jie, Li Yi-Fei, Tan Jun-Hao, Chen Li-Ming
PDF
HTML
导出引用
  • 随着激光和加速器技术的发展, 激光场强度和粒子能量也有所提升, 在高场强和高电子能量的条件下, 电子与光子的汤姆孙散射过程将达到高度非线性状态, 在这种状态下会发生多光子效应, 即单个电子同时与多个光子相互作用并辐射一个高能光子, 此过程通常称为多光子汤姆孙散射. 当场强和粒子能量变得更高时, 需要引入量子电动力学理论来解决极端光场物理中的动理学过程. 近期, 全球多台数拍瓦激光装置逐渐投入使用, 激光等离子体相互作用中的此类效应会变得极其显著. 而全光汤姆孙散射成为目前研究极端光场物理最佳的实验方案, 因此, 系统地研究全光多光子汤姆孙散射是本领域未来十年极其重要的方向. 本文对近年来全光汤姆孙散射实验从单光子、低阶多光子到高阶多光子的研究进展进行了综述, 并对其未来的发展方向进行了展望. 另外, 伴随着散射过程产生的准直高亮X/伽马射线, 有望发展成为具有重要应用价值的紧凑型超亮高能光源.
    With the development of laser and accelerator technology, and improvement of the particle energy and field intensity, the scattering process between electron and photon will reach the highly nonlinear regime, where the multi-photon process takes place and the quantum electrodynamics starts to play a role. In the near future, with the commissioning of the multi-PW laser facilities, these effects will be available. In this article, we review the recent progress of electron-photon scattering experiments, from single or few-photon regime to high-order multi-photon regime. In the scattering process, collimated bright X/gamma-energy photons are generated, making it possible to realize a compact top-table bright light source, which is also known as inverse Compton scattering source. Finally, the prospects and challenges of scattering experiments are discussed.
      通信作者: 闫文超, wenchaoyan@sjtu.edu.cn ; 陈黎明, lmchen@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11991073, 12074251, 11905289, 11805266)、中国工程物理研究院挑战计划(批准号: TZ2018005)、国家重点基础研究发展计划(批准号: 2017YFA0403301)和中国科学院先导专项(批准号: XDA25030400, XDB17030500)资助的课题
      Corresponding author: Yan Wen-Chao, wenchaoyan@sjtu.edu.cn ; Chen Li-Ming, lmchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991073, 12074251, 11905289, 11805266), the Science Challenge Project of China Academy of Engineering Physics (Grant No. TZ2018005), the National Basic Research Program of China (Grant No. 2017YFA0403301), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030400, XDB17030500)
    [1]

    Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253Google Scholar

    [2]

    Barkla C G 1903 Proc. Phys. Soc. London 19 185Google Scholar

    [3]

    Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685Google Scholar

    [4]

    Stephenson R J 1967 Am. J. Phys. 35 140Google Scholar

    [5]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [6]

    Compton A H 1923 Nature 112 435

    [7]

    Woo Y H 1925 Phys. Rev. 25 444Google Scholar

    [8]

    Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814Google Scholar

    [9]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470Google Scholar

    [10]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467Google Scholar

    [11]

    Woo Y H 1931 Phys. Rev. 38 6Google Scholar

    [12]

    Woo Y H 1932 Phys.l Rev. 41 21Google Scholar

    [13]

    Woo Y H 1932 Phys. Rev. 39 555Google Scholar

    [14]

    D E Evans, J K 1969 Rep. Prog. Phys. 32 207Google Scholar

    [15]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [16]

    Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)

    [17]

    Prunty S L 2014 Phys. Scr. 89 128001Google Scholar

    [18]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [19]

    Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407Google Scholar

    [20]

    Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359Google Scholar

    [21]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [22]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [23]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [24]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [25]

    Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696Google Scholar

    [26]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [27]

    Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf

    [28]

    Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34Google Scholar

    [29]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [30]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54Google Scholar

    [31]

    Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011Google Scholar

    [32]

    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221Google Scholar

    [33]

    Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006Google Scholar

    [34]

    Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149

    [35]

    Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514Google Scholar

    [36]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [37]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [38]

    Burton D A, Noble A 2014 Contemp. Phys. 55 110Google Scholar

    [39]

    Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004

    [40]

    O'Connell R F 2012 Contemp. Phys. 53 301Google Scholar

    [41]

    Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [42]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [43]

    Hammond R T 2010 Phys. Rev. A 81 062104Google Scholar

    [44]

    Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [45]

    Di Piazza A 2016 Phys. Rev. Lett. 117 213201Google Scholar

    [46]

    Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93Google Scholar

    [47]

    Ilderton A 2011 Phys. Rev. Lett. 106 020404Google Scholar

    [48]

    Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [49]

    Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023Google Scholar

    [50]

    Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [51]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [52]

    Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6

    [53]

    Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187

    [54]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738Google Scholar

    [55]

    Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383Google Scholar

    [56]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [57]

    Goldman I I 1964 Sov. Phys. JETP 19 954

    [58]

    Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529

    [59]

    Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653Google Scholar

    [60]

    Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [61]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [62]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [63]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182Google Scholar

    [64]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [65]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704Google Scholar

    [66]

    Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16

    [67]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039

    [68]

    Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108Google Scholar

    [69]

    Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [70]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [71]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [72]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4

    [73]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [74]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [75]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802Google Scholar

    [76]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [77]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9

    [78]

    Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106Google Scholar

    [79]

    Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005Google Scholar

    [80]

    Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518Google Scholar

    [81]

    Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110Google Scholar

    [82]

    Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001

    [83]

    Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401Google Scholar

    [84]

    Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037Google Scholar

    [85]

    Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263Google Scholar

    [86]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [87]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [88]

    Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375Google Scholar

    [89]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [90]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [91]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [92]

    Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80Google Scholar

    [93]

    Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141Google Scholar

    [94]

    Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119Google Scholar

    [95]

    Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502Google Scholar

    [96]

    Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118Google Scholar

    [97]

    Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329

    [98]

    Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020

    [99]

    Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004

    [100]

    Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362Google Scholar

    [101]

    Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903Google Scholar

    [102]

    Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401Google Scholar

    [103]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [104]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [105]

    Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015Google Scholar

    [106]

    Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9Google Scholar

    [107]

    Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003Google Scholar

    [108]

    Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429Google Scholar

    [109]

    Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703Google Scholar

    [110]

    Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002Google Scholar

    [111]

    Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433Google Scholar

    [112]

    Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801Google Scholar

    [113]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [114]

    Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622Google Scholar

    [115]

    Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352Google Scholar

    [116]

    Gu Y J, Weber S 2018 Opt. Express 26 19932Google Scholar

  • 图 1  近期国际上全光汤姆孙散射的主要实验进展及发展方向

    Fig. 1.  Recent progress and road map of the Thomson scattering.

    图 2  两种不同的实验方案 (a)单束激光-等离子体镜方案; (b)双光束方案

    Fig. 2.  Two different experimental geometries for all-optical scattering: (a) Single beam plasma mirror regime; (b) dual beam regime.

    图 3  等离子体镜方案产生X射线的示意图

    Fig. 3.  Illustration of the X-ray generation via plasma mirror regime.

    图 4  全光逆康普顿散射X射线随电子能量的定标率, 红色代表使用800 nm散射激光, 蓝色代表使用400 nm散射激光

    Fig. 4.  Scaling law of inverse Compton scattering X-ray energy by fundamental and second-order harmonics of Ti: Sapphire scattering laser.

    图 5  文献[91]报道的全光汤姆孙散射的非线性效应, a0明显影响了X射线能量的定标率

    Fig. 5.  Scaling shift in the few-photon scattering experiment. Reprinted with permission from Ref. [91].

    图 6  文献[35]报道的高阶多光子效应

    Fig. 6.  Effect of high-order multi-photon scattering reported in Ref. [35].

    图 7  汤姆孙散射截面随a0变化的定标率, 该变化曲线由文献[60]的理论计算得出

    Fig. 7.  Scaling law of the Thomson scattering cross section vs. a0 in the rest frame. The blue range means where the RR effect matters. The curves were plotted based on Ref. [60]

    表 1  常见全光逆康普顿X射线源参数

    Table 1.  Parameter of all-optical inverse Compton scattering X-ray source.

    参数数值
    源尺寸/μm~5 (root mean square)
    发散角/ mrad~5 (FWHM)
    峰值能量keV—20 MeV
    单能性准单能(线性)/连续谱(非线性)*
    单发光子数107—1010
    峰值亮度/ ph·(s·mm2·mrad2·0.1%BW)–11017—1022
    下载: 导出CSV
  • [1]

    Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253Google Scholar

    [2]

    Barkla C G 1903 Proc. Phys. Soc. London 19 185Google Scholar

    [3]

    Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685Google Scholar

    [4]

    Stephenson R J 1967 Am. J. Phys. 35 140Google Scholar

    [5]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [6]

    Compton A H 1923 Nature 112 435

    [7]

    Woo Y H 1925 Phys. Rev. 25 444Google Scholar

    [8]

    Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814Google Scholar

    [9]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470Google Scholar

    [10]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467Google Scholar

    [11]

    Woo Y H 1931 Phys. Rev. 38 6Google Scholar

    [12]

    Woo Y H 1932 Phys.l Rev. 41 21Google Scholar

    [13]

    Woo Y H 1932 Phys. Rev. 39 555Google Scholar

    [14]

    D E Evans, J K 1969 Rep. Prog. Phys. 32 207Google Scholar

    [15]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [16]

    Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)

    [17]

    Prunty S L 2014 Phys. Scr. 89 128001Google Scholar

    [18]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [19]

    Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407Google Scholar

    [20]

    Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359Google Scholar

    [21]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [22]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [23]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [24]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [25]

    Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696Google Scholar

    [26]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [27]

    Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf

    [28]

    Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34Google Scholar

    [29]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [30]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54Google Scholar

    [31]

    Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011Google Scholar

    [32]

    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221Google Scholar

    [33]

    Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006Google Scholar

    [34]

    Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149

    [35]

    Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514Google Scholar

    [36]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [37]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [38]

    Burton D A, Noble A 2014 Contemp. Phys. 55 110Google Scholar

    [39]

    Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004

    [40]

    O'Connell R F 2012 Contemp. Phys. 53 301Google Scholar

    [41]

    Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [42]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [43]

    Hammond R T 2010 Phys. Rev. A 81 062104Google Scholar

    [44]

    Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [45]

    Di Piazza A 2016 Phys. Rev. Lett. 117 213201Google Scholar

    [46]

    Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93Google Scholar

    [47]

    Ilderton A 2011 Phys. Rev. Lett. 106 020404Google Scholar

    [48]

    Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [49]

    Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023Google Scholar

    [50]

    Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [51]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [52]

    Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6

    [53]

    Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187

    [54]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738Google Scholar

    [55]

    Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383Google Scholar

    [56]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [57]

    Goldman I I 1964 Sov. Phys. JETP 19 954

    [58]

    Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529

    [59]

    Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653Google Scholar

    [60]

    Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [61]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [62]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [63]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182Google Scholar

    [64]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [65]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704Google Scholar

    [66]

    Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16

    [67]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039

    [68]

    Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108Google Scholar

    [69]

    Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [70]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [71]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [72]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4

    [73]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [74]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [75]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802Google Scholar

    [76]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [77]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9

    [78]

    Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106Google Scholar

    [79]

    Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005Google Scholar

    [80]

    Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518Google Scholar

    [81]

    Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110Google Scholar

    [82]

    Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001

    [83]

    Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401Google Scholar

    [84]

    Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037Google Scholar

    [85]

    Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263Google Scholar

    [86]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [87]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [88]

    Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375Google Scholar

    [89]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [90]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [91]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [92]

    Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80Google Scholar

    [93]

    Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141Google Scholar

    [94]

    Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119Google Scholar

    [95]

    Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502Google Scholar

    [96]

    Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118Google Scholar

    [97]

    Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329

    [98]

    Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020

    [99]

    Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004

    [100]

    Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362Google Scholar

    [101]

    Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903Google Scholar

    [102]

    Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401Google Scholar

    [103]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [104]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [105]

    Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015Google Scholar

    [106]

    Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9Google Scholar

    [107]

    Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003Google Scholar

    [108]

    Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429Google Scholar

    [109]

    Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703Google Scholar

    [110]

    Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002Google Scholar

    [111]

    Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433Google Scholar

    [112]

    Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801Google Scholar

    [113]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [114]

    Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622Google Scholar

    [115]

    Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352Google Scholar

    [116]

    Gu Y J, Weber S 2018 Opt. Express 26 19932Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 杨露, 王晓南, 陈鑫, 陈鹏帆, 夏倩雯, 熊力, 龙昊雨, 李林洋, 毛小保, 周海龙, 张玮炜, 兰小飞, 何阳帆. 利用均匀密度等离子体通道加速质子的辐射压力增强方案. 物理学报, 2024, 73(11): 115202. doi: 10.7498/aps.73.20240032
    [3] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [4] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统. 物理学报, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [5] 叶翰晟, 谷渝秋, 黄文会, 吴玉迟, 谭放, 张晓辉, 王少义. 基于激光尾场加速的自反射式全光汤姆孙散射的参数优化. 物理学报, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [6] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计. 物理学报, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [7] 马堃, 焦铮, 蒋峰建, 叶剑锋, 吕海江, 陈展斌. 洞态Ar原子Kα和Kβ伴线和超伴线的理论计算. 物理学报, 2018, 67(17): 173201. doi: 10.7498/aps.67.20180553
    [8] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱. 物理学报, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [9] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] 黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰. kHz激光与固体靶相互作用产生的X射线源. 物理学报, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [13] 周少彤, 李军, 黄显宾, 蔡红春, 张思群, 李晶, 段书超, 周荣国. 阳加速器钛丝X箍缩光源辐射特性实验研究. 物理学报, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [14] 孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰. 超强激光与Ar团簇相互作用中X射线的研究. 物理学报, 2012, 61(7): 075206. doi: 10.7498/aps.61.075206
    [15] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  7840
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-11
  • 修回日期:  2021-03-21
  • 上网日期:  2021-04-13
  • 刊出日期:  2021-04-20

/

返回文章
返回