搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类氦C离子诱发不同金属厚靶原子的K-X射线

梅策香 张小安 周贤明 梁昌慧 曾利霞 张艳宁 杜树斌 郭义盼 杨治虎

引用本文:
Citation:

类氦C离子诱发不同金属厚靶原子的K-X射线

梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎

K-X rays induced by helium-like C ions in thick target atoms of different metals

Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu
PDF
HTML
导出引用
  • 利用中国原子能科学研究院 HI-13MV串列加速器上提供的动能为 15—55 MeV的类氦C离子分别轰击Fe, Ni, Nb和Mo金属厚靶, 采用HpGe探测器测量了K-X射线, 获得了相应的K-X射线的发射截面. 本文中由于各个靶原子外壳层电离度的不同, 类氦C离子与Fe, Ni靶原子相互作用发射的Kβ与Kα X射线的分支强度比随入射离子动能增加而减小, 而Nb, Mo靶原子发射的K-X射线分支强度比变化不明显. 利用厚靶截面公式计算了靶原子K-X射线的发射截面, 并与不同的理论模型及质子的结果进行了对比. 结果表明随类氦C离子动能的增大, Fe, Ni靶原子发射的Kβ与Kα X射线的总产生截面与考虑多电离的两体碰撞近似修正模型最为符合Nb, Mo靶原子发射的Kβ与Kα X射线的总产生截面与平面波恩近似模型的理论值最为接近. 质子与单核子C离子能量相同时, 质子比类氦C离子激发不同靶的K-X射线产生截面约小3个数量级.
    The physical process and experimental phenomena of the interaction between highly charged heavy ions and atoms are very complex, particularly in the intermediate energy region, because of the limitation of accelerator and existing theoretical analysis, less systematic researches, incomplete atomic data, and not so high accuracy. The research of celestial element X-ray data is more scarce and the research of X-ray data of celestial elements is even more scarce. Helium-like C ions with 15–55 MeV kinetic energy provided by the HI-13 MV series accelerator of the China Institute of Atomic Energy are used to bombard Fe, Ni, Nb and Mo thick targets. The HpGe detectors are used to measure the K-X ray emission, and the corresponding K-X ray emission cross sections are obtained. Due to the different ionization degrees of the shell layers of various target atoms, the branching intensity ratio of Kβ to Kα X rays emitted by Helium-like C ions interacting with Fe and Ni target atoms decreases with the increase of the kinetic energy of the incident ions, while the branching intensity ratio of K-X rays emitted by Nb and Mo target atoms does not change significantly. The K-X ray emission cross section of target atom is calculated by using the formula of thick target cross section, and compared with the results of different theoretical models and proton. The results show that with the increase of the kinetic energy of helium-like C ions, the total emission cross section of the Kβ and Kα X ray emitted from Fe and Ni target atoms are most consistent with the BEA correction model considering multiple ionization, and the total emission cross section of Kβ and Kα X ray emitted from Nb and Mo target atoms are closest to the theoretical values of PWBA model. When the energy of proton is the same as that of single nucleon C ion, the cross section of K-X ray produced by proton is about three orders of magnitude smaller than that produced by helium-like C ion.
      通信作者: 杨治虎, z.yang@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12205247)、陕西省自然科学基础研究青年项目(批准号: 2023-JC-QN-0080)、陕西数理基础科学研究项目(批准号: 22JSQ040)、咸阳师范学院青蓝人才培养项目(批准号: XSYQL201910)、咸阳市离子束与光物理重点实验室(批准号: L2022-CXNL-ZDSYS-001)和陕西省大学生创新创业训练计划(批准号: S202010722055S)资助的课题.
      Corresponding author: Yang Zhi-Hu, z.yang@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205247), the Natural Fundamental Science Research Project of Shaanxi Province, China (Grant No. 2023-JC-QN-0080), the Fundamental Science Research Project for Mathematics and Physics of Shaanxi Province, China (Grant No. 22JSQ040), the Qinglan Talents Training Project of Xianyang Normal University, China (Grant No. XSYQL201910), the Key Laboratory of Ion Beam and Optical Physics of Xianyang, China (Grant No. L2022-CXNL-ZDSYS-001), and Shaanxi University Students Innovation and Entrepreneurship Training Program, China (Grant No. S202010722055S).
    [1]

    Gerjuoy E 1961 Rev. Mod. Phys. 33 544Google Scholar

    [2]

    曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页

    Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287

    [3]

    Bethe H A 1950 Rev. Mod. Phys. 22 213Google Scholar

    [4]

    Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281Google Scholar

    [5]

    Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315Google Scholar

    [6]

    Gryziński M 1965 Phys. Rev. 138 A336

    [7]

    McGuire J H, Richard P 1973 Phys. Rev. A 8 1374

    [8]

    Brandt W, Lapicki G 1979 Phys. Rev. A 20 465Google Scholar

    [9]

    Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983Google Scholar

    [10]

    Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655Google Scholar

    [11]

    Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907Google Scholar

    [12]

    Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8Google Scholar

    [13]

    Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358Google Scholar

    [14]

    Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A

    [15]

    Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101Google Scholar

    [16]

    Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701Google Scholar

    [17]

    Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789Google Scholar

    [18]

    Collaboration H 2017 Nature 551 478Google Scholar

    [19]

    Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105Google Scholar

    [20]

    Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702Google Scholar

    [21]

    Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8Google Scholar

    [22]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [23]

    Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281Google Scholar

    [24]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997Google Scholar

    [26]

    Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261Google Scholar

    [27]

    Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958Google Scholar

    [28]

    Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716Google Scholar

    [29]

    Peterson R C 2011 Astrophys. J. 742 21Google Scholar

    [30]

    Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180Google Scholar

    [31]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12

    [32]

    Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [33]

    Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564Google Scholar

    [34]

    Khan M R, Crumpton D 1978 Appl. Phys. 15 335Google Scholar

    [35]

    McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1Google Scholar

    [36]

    Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04

    [37]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201Google Scholar

    [38]

    Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719Google Scholar

    [39]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233Google Scholar

    [40]

    周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 物理学报 62 083201Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201Google Scholar

    [41]

    Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental equipment.

    图 2  127 μm Be窗厚度的HpGe探测效率曲线

    Fig. 2.  Detection efficiency curve of HpGe with 127 μm Be window.

    图 3  15 MeV 类氦C离子轰击各靶产生的靶的 K-X 射线谱

    Fig. 3.  Targets K-X ray spectra produced by 15 MeV helium-like C ions.

    图 4  类氦C离子诱发不同金属靶的K-X射线分支比随入射能量的变化

    Fig. 4.  Variation of K-X ray branching ratio of different metal targets induced by helium-like C ions with incident energy.

    图 5  单核子能量下C4+与H分别入射各靶的X射线产生截面比较

    Fig. 5.  Comparison of X ray generation cross sections of C4+ and H incident on each target at single nucleon energy.

    图 6  类氦C离子激发不同金属靶的K-X射线截面随入射能量的变化

    Fig. 6.  K-X ray cross sections of helium-like C ions excited different metal targets as a function of incident energy.

  • [1]

    Gerjuoy E 1961 Rev. Mod. Phys. 33 544Google Scholar

    [2]

    曾谨言 2001 量子力学导论(第二版)(北京: 北京大学出版社)第287页

    Zeng J Y 2001 Introduction to Quantum Mechanics (2nd Ed.) (Beijing: Peking University Press) p287

    [3]

    Bethe H A 1950 Rev. Mod. Phys. 22 213Google Scholar

    [4]

    Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instrum. Methods. B 169 281Google Scholar

    [5]

    Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315Google Scholar

    [6]

    Gryziński M 1965 Phys. Rev. 138 A336

    [7]

    McGuire J H, Richard P 1973 Phys. Rev. A 8 1374

    [8]

    Brandt W, Lapicki G 1979 Phys. Rev. A 20 465Google Scholar

    [9]

    Basbas G, Brandt W, Laubert R 1973 Phys. Rev. A 7 983Google Scholar

    [10]

    Basbas G, Brandt W, Laubert R 1978 Phys. Rev. A 17 1655Google Scholar

    [11]

    Gray T J, Cocke C L, Gardner R K 1977 Phys. Rev. A 16 1907Google Scholar

    [12]

    Lutz H O, Stein J, Datz S, Moak C D 1972 Phys. Rev. Lett. 28 8Google Scholar

    [13]

    Brandt W, Laubert R, Mourinot M 1973 Phys. Rev. Lett. 30 358Google Scholar

    [14]

    Timmerman R, Weeren R J V, Botteon A, Röttgering H J A, McNamara B R, Sweijen F, Bîrzan L, Morabito L K 2022 Astron. Astrophys. 668 A

    [15]

    Kimura K, Urushihara D, Kondo R, Yamamoto Y, Ang A K R, Asaka T, Happo N, Hagihara T, Matsushita T, Tajiri H, Miyazaki H, Ohara K, Iwata M, Hayashi K 2021 Phys. Rev. B 104 144101Google Scholar

    [16]

    Lalande M, Abdelmouleh M, Ryszka M, Vizcaino V, Rangama J, Méry A, Durantel F, Schlathölter T, Poully J C 2018 Phys. Rev. A 98 062701Google Scholar

    [17]

    Coskun A F, Han G J, Ganesh S, Chen S Y, Clavé X R, Harmsen S, Jiang S, Schürch C M, Bai Y H, Hitzman C, Nolan G P 2021 Nat. Commun. 12 789Google Scholar

    [18]

    Collaboration H 2017 Nature 551 478Google Scholar

    [19]

    Paul H, Sacher J 1989 Atom. Data Nucl. Data 42 105Google Scholar

    [20]

    Yu Y C, McNeir M R, Weathers D L, Duggan J L, McDaniel F D, Lapicki G 1991 Phys. Rev. A 44 5702Google Scholar

    [21]

    Bertol A P L, Hinrichs R, Vasconcellos M A Z 2015 Nucl. Instr. Meth. B 365 8Google Scholar

    [22]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [23]

    Chen X M, Shao J X, Yang Z H, Zhang H Q, Cui Y, Xu X, Xiao G Q, Zhao Y T, Zhang X A, Zhang Y P 2007 Eur. Phys. J. D 41 281Google Scholar

    [24]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Santos-Lleo M, Schartel N, Tananbaum H, Tucker W, Weisskopf M C 2009 Nature 462 997Google Scholar

    [26]

    Wilkes B J, Tucker W, Schartel N, Santos-Lleo M 2022 Nature 606 261Google Scholar

    [27]

    Wheeler R M, Chaturvedi R P, Duggan J L, Tricomi J, Miller P D 1976 Phys. Rev. A 13 958Google Scholar

    [28]

    Bambynek W, Crasemann B, Fink R W, et al. 1972 Rev. Mod. Phys. 44 716Google Scholar

    [29]

    Peterson R C 2011 Astrophys. J. 742 21Google Scholar

    [30]

    Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan S G 2006 Astrophys. J. 643 1180Google Scholar

    [31]

    Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C) 2009 X-Ray Data Booklet (Berkeley: Lawrence Berkeley National Laboratory University of California) pp10–12

    [32]

    Garcia J D, Fortner R J, Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [33]

    Zhang H Q, Chen X M, Yang Z H, Xu J K, Cui Y, Shao J X, Zhang X, Zhao Y T, Zhang Y P, Xiao G Q 2010 Nucl. Instr. Meth. B 268 1564Google Scholar

    [34]

    Khan M R, Crumpton D 1978 Appl. Phys. 15 335Google Scholar

    [35]

    McKnight R H, Thornton S T, Karlowicz R R 1975 Nucl. Instr. Methods. 123 1Google Scholar

    [36]

    Open Program The Stopping and Range of Ions in Matter, Ziegler J F, Ziegler M D, Biersack J P http://www.srim.org/ [2008-04

    [37]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta. Phys. Sin. 70 023201Google Scholar

    [38]

    Burch D, Ingalls W B, Risley J S, Heffner R 1972 Phys. Rev. Lett. 29 1719Google Scholar

    [39]

    Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instr. Meth. B 195 233Google Scholar

    [40]

    周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青 2013 物理学报 62 083201Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Sun Y B, Wang X, Lei Y, Wang Y Y, Xu G, Ren J R, Zhang X A, Liang C H, Li Y Z, Mei C X, Xiao G Q 2013 Acta. Phys. Sin. 62 083201Google Scholar

    [41]

    Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X, Sun Y B 2013 Nucl. Instrum. Meth. B 299 61Google Scholar

  • [1] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [2] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [3] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究. 物理学报, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [4] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [5] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性. 物理学报, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [6] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [7] 邢永忠, 赵兴文, 郑玉明. 不变振幅的不同投影选择对核子自能与碰撞截面的影响. 物理学报, 2014, 63(15): 152101. doi: 10.7498/aps.63.152101
    [8] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [9] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究. 物理学报, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [11] 王晓璐, 令狐荣锋, 杨建会, 吕兵, 高涛, 杨向东. Ne同位素替代下Ne-HF碰撞截面的理论计算. 物理学报, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [12] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究. 物理学报, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [13] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [14] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [15] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究. 物理学报, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [18] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [19] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  597
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2023-11-02
  • 上网日期:  2023-11-24
  • 刊出日期:  2024-02-20

/

返回文章
返回