搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近玻尔速度不同离子碰撞产生Al的K X射线

周贤明 尉静 程锐 梁昌慧 陈燕红 赵永涛 张小安

引用本文:
Citation:

近玻尔速度不同离子碰撞产生Al的K X射线

周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安

K-shell X-ray of Al produced by collisions of ions with near Bohr velocities

Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An
PDF
HTML
导出引用
  • 在玻尔速度附近能区, 测量了H+, He2+和I22+, Xe20+离子作用于Al靶时碰撞激发靶的K壳层X射线. 得到了相应X射线的发射截面, 并与不同理论模型进行对比. 研究表明, 单核子能量相同时, 轻离子入射激发的X射线产生截面比高电荷态重离子轰击时小了大约4个数量级. 质子、He2+离子激发的实验截面可以由ECPSSR理论来很好的估算, 而I22+, Xe20+的实验结果与考虑有效电荷、低速库仑偏转修正的BEA理论计算符合较好.
    X-ray emissionproduced by highly charged ions with the energy range near the Bohr velocity involves complicated atomic process. However, duo to the limitation of experimental conditions, the relevant researches are nearly absent. It is unclear whether the existing theory is applicable in such an energy range. This needs further exploring. In the present work, K X-ray spectra of Al excited by H+, He2+ and highly charged heavy ions I22+ and Xe20+ are investigated by using an Si drift X-ray detector in the energy range near the Bohr velocity. The X-ray production cross sections are extracted from the X-ray counts and compared with the theoretical simulations from PWBA, ECPSSR and modified BEA model. It is indicated that the cross section increases with the augment of projectile energy. With the same incident energy per nucleon, the cross section induced by highly charged heavy ions is a factor of about 104 larger than that by light ions . With the impact of H+ and He2+ ions, the K-shell electrons are mainly knocked off through the direct Coulomb ionization, and the X-ray emission cross section can be well predicted by ECPSSR theory. For the bombardment of highly charged heavy ions I22+ and Xe20+, except for the Coulomb ionization, the orbital electrons can also be excited by electron capture. The BEA simulation after being modified by both Coulomb repulsion and effective charge can well predict the X-ray production cross section.
      通信作者: 张小安, zhangxiaoan2000@126.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: 11505248, 11775042, 11875096)、咸阳师范学院学术带头人 (批准号: XSYXSD202108)、陕西省科技厅科研计划 (批准号: 2021JQ-812)和咸阳师范学院重点培育项目(批准号: XSYK21037)资助的课题.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017 YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096), the Acadimic Leader of Xianyang Normal University, China (Grant No. XSYXSD202108), the Scientific Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2021 JQ-812), and the Key Cultivation Project of Xianyang Normal University, China (Grant No. XSYK21037).
    [1]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar

    [2]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [3]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar

    [4]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [5]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar

    [8]

    Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar

    [9]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar

    [10]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [11]

    Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar

    [12]

    Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar

    [13]

    Lapicki G 2005 X-ray Spectrom 34 269Google Scholar

    [14]

    Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar

    [15]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar

    [16]

    梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar

    Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar

    [17]

    Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar

    [18]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar

    [19]

    Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar

    [20]

    Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar

    [21]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [22]

    Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar

    [23]

    Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)

    [24]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [25]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [26]

    Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar

    [27]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [28]

    Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [29]

    Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar

    [30]

    Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129

    [31]

    Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar

    [32]

    周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar

    [33]

    Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar

    [34]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [35]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [36]

    Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar

    [37]

    Shima K 1978 Phys. Lett. A 67 351Google Scholar

    [38]

    Khan J M, Potter D L 1964 Phys. Rev. 133 A 890

    [39]

    Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735

    [40]

    Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar

    [41]

    Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar

    [42]

    Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar

    [43]

    Morita S, Kamiya M 1997 Chin. J. Phys. 15 199

    [44]

    Slater J C 1930 Phys. Rev. 36 57Google Scholar

    [45]

    Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108

  • 图 1  实验装置示意图(1–离子源; 2–分析磁铁; 3–高压加速平台; 4–光阑; 5–90°偏转磁铁; 6–四级透镜; 7–60°偏转磁铁; 8–超高真空靶室; 9–靶; 10–X射线探测器; 11–X射线记录系统; 12–穿透式法拉第筒; 13–法拉第筒; 14–离子计数记录系统; FC为束流线上可插拔式法拉第筒)

    Fig. 1.  Schematic drawing of experiment setup: 1–ECR ion source; 2–analyzing magnet; 3–high volt accelerate platform; 4–barrier; 5–90° deflection magnet; 6–magnetic quadrupled lens; 7–60° deflection magnet; 8–ultrahigh vacuum target chamber; 9–target; 10–silicon drift detector; 11–X-ray recording system; 12–penetrable faraday cup; 13–common faraday cup; 14–projectile number recording system, FC is the faraday cup.

    图 2  SDD在0.5—4 keV范围内的探测效率

    Fig. 2.  Efficiency of the SDD detector in the energy region of 0.5–4.0 keV.

    图 3  不同离子入射激发Al的典型X射线谱(曲线为高斯拟合, xc为谱线中心能量, W为谱线的半高全宽)

    Fig. 3.  Typical X-ray spectrum of Al induced by various projectile (The curve is Gauss fitting, xc and W is the central energy and full width at half maximum of the spectral line, respectively).

    图 4  不同离子激发Al的K壳层X射线产生截面随单核子能量变化

    Fig. 4.  Al K X-ray cross section excited by various projectile

    图 5  H+激发的发射实验截面与理论模拟

    Fig. 5.  Experimental cross section excited by H+, and theory simulations.

    图 6  He2+激发的发射实验截面与理论模拟

    Fig. 6.  Experimental cross section excited by He2+, and theory simulations.

    图 7  I22+激发的实验发射截面与理论模拟

    Fig. 7.  Experimental cross section excited by I22+, and theory simulations.

    图 8  Xe20+激发的实验发射截面与理论模拟

    Fig. 8.  Experimental cross section excited by Xe20+, and theory simulations.

    表 1  不同离子激发Al的 K X射线实验发射截面

    Table 1.  Al K X-ray cross section excited by various projectile.

    离子种类入射能量/MeV截面/barn
    H+
    0.05(1.06 ± 0.17) × 10–1
    0.102.15 ± 0.34
    0.159.06 ± 1.45
    0.20(2.03 ± 0.33) × 101
    0.25(4.50 ± 0.72) × 101
    0.30(7.73 ± 0.12) × 101
    He2+
    0.10(5.98 ± 0.96) × 10–3
    0.20(2.14 ± 0.34) × 10–1
    0.301.10 ± 0.18
    0.403.88 ± 0.62
    0.509.25 ± 1.48
    0.60(2.42 ± 0.39) × 101
    I22+
    2.00(3.93 ± 0.63) × 101
    2.50(4.73 ± 0.78) × 101
    3.00(6.09 ± 0.97) × 101
    3.50(6.84 ±1.09) × 101
    4.00(7.57 ± 1.21) × 101
    4.50(7.99 ± 1.28) × 101
    5.00(9.18 ± 1.47) × 101
    Xe20+
    1.20(1.94 ± 0.31) × 101
    2.40(4.67 ± 0.74) × 101
    3.00(6.32 ± 1.01) × 101
    3.60(7.68 ± 1.23) × 101
    4.80(1.04 ± 0.17) × 102
    6.00(1.21 ± 0.19) × 102
    下载: 导出CSV
  • [1]

    Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 416 94Google Scholar

    [2]

    Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar

    [3]

    Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644Google Scholar

    [4]

    柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 物理学报 69 043201Google Scholar

    Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar

    [5]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006Google Scholar

    Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci Sin-Phys. Mech. Astron. 46 073006Google Scholar

    [8]

    Gryzinski M 1965 Phys. Rev. A 138 A336Google Scholar

    [9]

    Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data Tables 24 1Google Scholar

    [10]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [11]

    Meyerhof W E, Anholt R, Saylor T K, Lazarus S M, Little A, Chase L F 1976 Phys. Rev. A 14 1653Google Scholar

    [12]

    Lapicki G 1989 J. Phys. Chem. Ref. Date 18 111Google Scholar

    [13]

    Lapicki G 2005 X-ray Spectrom 34 269Google Scholar

    [14]

    Miranda J, Lapicki G 2014 At. Data Nucl. Data Tables 100 651Google Scholar

    [15]

    Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969Google Scholar

    [16]

    梁昌慧, 张小安, 周贤明, 赵永涛, 肖国青 2021 物理学报 70 183201Google Scholar

    Liang C H, Zhang X A, Zhou X M, Zhao Y T, Xiao G Q 2021 Acta Phys. Sin. 70 183201Google Scholar

    [17]

    Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liu Y, Zhang Y N, Liang C H, Zhao Y T, Zhang X A 2022 Chin. Phys. B 31 063204Google Scholar

    [18]

    周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 物理学报 70 023201Google Scholar

    Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar

    [19]

    Bearden J A 1967 Rev. Mod. Phys 39 78Google Scholar

    [20]

    Krause M O and Oliver J H 1979 J. Phys. Chem. Ref. Data 8 329Google Scholar

    [21]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [22]

    Campbell J L 2009 At. Data Nucl. Data Tables 95 115Google Scholar

    [23]

    Thompson A C, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson Al, Underwood J H, Kim K J, Kirz J, Lindau I, Pianetta P, Winick H, Williams G P, Scofield J H (Edited by Thompson A C, Vaughan D) 2001 X-Ray Data Book (http://xdb.lbl.gov/)

    [24]

    Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546Google Scholar

    [25]

    Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125Google Scholar

    [26]

    Sarkadi L, Mukoyama T 1980 J. Phys. B Atom. Mol. Phys. 13 2255Google Scholar

    [27]

    Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959Google Scholar

    [28]

    Banaś D, Pajek M, Semaniak J, Braziewicza J, Kubala-Kukuśa A, Majewskaa U, Czyżewskib T, Jaskółab M, Kretschmerc W, Mukoyamad T, Trautmanne D 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233Google Scholar

    [29]

    Basbas G, Brandt W, Roman L 1973 Phys. Rev. A 7 983Google Scholar

    [30]

    Ziegler J F, Ziegler M D, Biersack J P 2019 Treatise on Heavy-Ion Science (Springer) pp93–129

    [31]

    Pajek M, Kobzev A P, Sandrik R, Iikhamov R A, Kusmurodov S H 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 42 346Google Scholar

    [32]

    周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2021 物理学报 65 027901Google Scholar

    Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2021 Acta Phys. Sin. 65 027901Google Scholar

    [33]

    Cohen D D, Harrigan M 1985 At. Data Nucl. Data Tables 33 255Google Scholar

    [34]

    Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [35]

    Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813Google Scholar

    [36]

    Brandt W, Laubert R, Sellin I 1966 Phys. Rev. 151 56Google Scholar

    [37]

    Shima K 1978 Phys. Lett. A 67 351Google Scholar

    [38]

    Khan J M, Potter D L 1964 Phys. Rev. 133 A 890

    [39]

    Khan J M, Potter O L, Worley R D 1965 Phys. Rev. 139 A 1735

    [40]

    Needham P B, Jr., Sartwell B O 1970 Phys. Rev. A 2 27Google Scholar

    [41]

    Shima K, Makino I, Sakisaka M 1971 Jpn. J. Phys. 31 971Google Scholar

    [42]

    Magon C, Milazzo M, Pizzi C, Porro F, Rota A, Ric-cobono G 1979 Nuovo. Cimento. A 54 277Google Scholar

    [43]

    Morita S, Kamiya M 1997 Chin. J. Phys. 15 199

    [44]

    Slater J C 1930 Phys. Rev. 36 57Google Scholar

    [45]

    Liu S Z 1986 Atomic Structure and Chemical Periodic System of Elements (Beijing: Science and Technology Press) p108

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线. 物理学报, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [3] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L X射线研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [4] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [5] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射. 物理学报, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [6] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究. 物理学报, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [8] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [9] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [10] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [11] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [13] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究. 物理学报, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [15] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究. 物理学报, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱. 物理学报, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [18] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [19] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [20] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
计量
  • 文章访问数:  4046
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-07
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回