搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面

李博 李玲 朱敬军 林炜平 安竹

引用本文:
Citation:

采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面

李博, 李玲, 朱敬军, 林炜平, 安竹

Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact

Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu
PDF
HTML
导出引用
  • 使用5—27 keV能量范围内的单能电子束轰击薄碳衬底上的薄Al (Z = 13), Ti (Z = 22), Cu (Z = 29), Ag (Z = 47), Au(Z = 79)靶, 使用硅漂移型探测器(SDD)收集产生的特征X射线, 测量了Al, Ti, Cu的K壳层电离截面以及Cu, Ag和Au的L壳层特征X射线的产生截面, 并且使用蒙特卡罗PENELOPE程序对实验结果进行了修正. 本文给出了Cu的L壳层特征X射线产生截面. 与半相对论扭曲波玻恩近似(semi-relativistic distorted-wave Born approximation, DWBA)理论值相比, 本文的大多数实验值在7%的范围内与理论值符合. 研究表明, 中重元素的L壳电离截面的理论计算以及相应的原子参数有待更精确的确定.
    The K-shell ionization cross sections of Al, Ti, Cu and L-shell characteristic X-ray production cross sections of Cu, Ag and Au (Lα, Lβ and Lγ subshells for Au) by electron impact at incident energy of 5–27 keV are determined experimentally. Thin films of the studied elements, deposited on thin carbon substrates, are employed as targets in the experiments. The thickness of the thin carbon substrate is 7 μg/cm2, the targets are Al, Ti, Cu, Ag and Au and their thickness values are 5.5 μg/cm2, 28 μg/cm2, Cu 35.5 μg/cm2, 44 μg/cm2 and 44 μg/cm2, respectively. The target thickness values are checked by using Rutherford Backscattering Spectrometry (RBS). The electron beam is provided by a scanning electron microscope (KYKY-2800B). The characteristic X-rays produced are recorded by a silicon drifted detector (XR-100SDD, Amptek), which has a C2 ultrathin window and can detect the low-energy X-rays down to boron Kα line (0.183 keV). The detector efficiency is calibrated by using the standard sources (55Fe, 57Co, 137Cs and 241Am) for X-ray energy larger than 3.3 keV while using the characteristic peak method (i.e. by measuring characteristic X-ray spectra produced by 20 keV electron impacting various thick solid targets) for X-ray energy less than 3.3 keV. The experimental results are corrected by the Monte Carlo code PENELOPE for the effects of target structure and Faraday cup. Meanwhile, the electron escape rates obtained from the Faraday cup and the signal pile-up effect are also considered. The results show that when the incident electron energy is low, the influences of electron energy loss and target thickness are significant. The thinner the target , the smaller the correction is. Experimental uncertainties for K-shell ionization cross sections of Al, Ti and Cu are about 5.0%, 5.6% and 5.1%, respectively; experimental uncertainties for L-shell X-ray production cross sections for Cu and Ag are about 5.3% and 4.0%, and for Lα,Lβ,and Lγ of Au are about 6.1%, 8.9% and 11.0%, respectively. The experimental L-shell characteristic X-ray production cross sections of Cu are given for the first time. Compared with the theoretical values of the semi-relativistic distorted-wave Born approximation (DWBA), most of the experimental values in this work are in good agreement within 7% deviation. The best agreement between the experimental results and the theoretical values is obtained for the K shell ionization cross section of Al, and the deviation is less than 1.7% for the data where the incident energy is above 10 keV. The least consistency with the theoretical values is the experimental L shell characteristic X-ray production cross sections of Cu, with a deviation being about 5–22%. The comparison of the experimental L shell characteristic X-ray production cross sections of Cu (including Ga and As elements) with those from the DWBA theory indicates that the theoretical calculations of L shell ionization cross sections of medium heavy elements and the corresponding atomic parameters (such as fluorescence yields and Coster-Kronig transition probabilities) need to be more accurately determined. According to the present results, the ionization cross sections or characteristic X-ray production cross sections measured by the thin target thin substrate, the thin target thick substrate and the thick target methods are equivalent to each other within the uncertainties.
      通信作者: 安竹, anzhu@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175158)资助的课题.
      Corresponding author: An Zhu, anzhu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175158).
    [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [3]

    Born M 1926 Z. Physik 38 803Google Scholar

    [4]

    Truhlar D O, Rice J K, Kuppermann A, Trajmar S 1970 Phys. Rev. A 1 778Google Scholar

    [5]

    Shelton W N, Leherissey E S, Madison D H 1971 Phys. Rev. A 3 242Google Scholar

    [6]

    Madison D H, Shelton W N 1973 Phys. Rev. A 7 499Google Scholar

    [7]

    Rainer H 1990 Phys. Lett. A 144 81

    [8]

    Bely O, Schmartz S B 1969 Astron. Astrophys. 1 281

    [9]

    Sampson D H 1986 Phys. Rev. A 34 986Google Scholar

    [10]

    Fontes C J 1993 Phys. Rev. A 47 1009Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [15]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1981 Phys. Rev. A 24 72Google Scholar

    [16]

    Shima K, Okuda M, Suzuki E, Tsubota T, Mikumo T 1983 J. Appl. Phys. 54 1202Google Scholar

    [17]

    Llovet X, Merlet C, Salvat F 2000 J. Phys. B:At. Mol. Opt. Phys. 33 3761Google Scholar

    [18]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304Google Scholar

    [19]

    Moy A, Merlet C, Llovet X, Dugne O 2013 J. Phys. B:At. Mol. Opt. Phys. 46 115202Google Scholar

    [20]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 EPL 118 13001Google Scholar

    [21]

    Liang S, Wu Y, Zhao Z, Xia X G, Ke Z X, Pan M, Wang B Y, Zhang P 2021 Radiat. Phys. Chem. 180 109321Google Scholar

    [22]

    Merlet C, Llovet X, Fernandez-Varea J M 2006 Phys. Rev. A 73 062719Google Scholar

    [23]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708Google Scholar

    [24]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [25]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4001Google Scholar

    [26]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71Google Scholar

    [27]

    Zhao J L, Bai S, An Z, Zhu J J, Tan W J, Liu M T 2020 Radiat. Phys. Chem. 171 108722Google Scholar

    [28]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710Google Scholar

    [29]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [30]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [31]

    李颖涵, 安竹, 朱敬军, 李玲 2020 物理学报 69 133401Google Scholar

    Li Y H, An Z, Zhu J J, Li L 2020 Acta Phys. Sin. 69 133401Google Scholar

    [32]

    Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res. B 506 15Google Scholar

    [33]

    樊启文, 许国基, 杜英辉, 张榕 2008 原子能科学技术 42 925

    Fan Q W, Xu G J, Du Y H, Zhang R 2008 Atom. Energ. Sci. Technol 42 925

    [34]

    Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J 2018 Nucl. Instrum. Methods Phys. Res. B 418 68Google Scholar

    [35]

    Liu B, Ding W, An Z, Zhu J J, Zhang Z, Li L, Lin W P 2021 Fusion Eng. Des. 172 112751Google Scholar

    [36]

    Sabbatucci L, Scot V, Fernandez J E 2014 Radiat. Phys. Chem. 104 372Google Scholar

    [37]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [38]

    Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rathkopf J, Scofield J 1991 Report UCRL-50400 30 Lawrence Livermore National Laboratory, Livermore, CA

    [39]

    Mei C S, Wu Y, Yuan Y, Chang C H, Qian Z C, Zhu J J, Moharram K 2016 J. Phys. B: At. Mol. Opt. Phys. 49 245204

    [40]

    Silvina P L, Vasconcellos M A Z, Ruth H, Jorge C T 2012 Phys. Rev. A 86 042701Google Scholar

    [41]

    He F Q, Peng X F, Long X G, Luo Z M, An Z 1997 Nucl. Instrum. Methods Phys. Res. B 129 445Google Scholar

    [42]

    周长庚, 付玉川, 安竹, 罗正明 2000 强激光与粒子束 12 601

    Zhou C G, Fu Y C, An Z, Luo Z M 2000 High Power Laser and Particle Beams 12 601

    [43]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 Radiat. Phys. Chem. 122 66Google Scholar

    [44]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [45]

    Wu Y, An Z, Liu M T, Duan Y M, Tang C H, Luo Z M 2004 J. Phys. B:At. Mol. Opt. Phys. 37 4527Google Scholar

    [46]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006Google Scholar

    [47]

    Campos C S, Vasconcellos M A Z 2002 Phys. Rev. A 66 012719Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  The schematic of experimental setup.

    图 2  SDD探测器的效率刻度曲线

    Fig. 2.  The X-ray detection efficiency of the SDD detector.

    图 3  从上到下分别是能量为25 keV的电子束碰撞Cu, Au, Al, Ti, Ag 5种薄靶产生的X射线谱, 元素×N中的N为对应谱放大倍数, 虚线是轫致辐射本底

    Fig. 3.  The experimental spectra for Cu, Au, Al, Ti, Ag target by 25 keV electron impact (from the top to the bottom). N in element ×N is the magnification of the corresponding spectrum. The dotted line is the bremsstrahlung background.

    图 4  能量为5—27 keV的电子碰撞5种薄靶K壳层电离截面或L壳层特征X射线产生截面修正系数

    Fig. 4.  The correction factors K for K shell ionization cross sections or L shell characteristic X-ray production cross sections of five thin targets with 5–27 keV electron impact.

    图 5  能量为5—27 keV的电子碰撞Al靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Fig. 5.  The K shell ionization cross sections of Al target by 5–27 keV electron impact. The solid shapes are experimental values. The solid line is DWBA theoretical value.

    图 7  能量为12—27 keV的电子碰撞Cu靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Fig. 7.  The K shell ionization cross sections of Cu target by 12–27 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 8  能量为5—27 keV的电子碰撞Cu靶L壳层特征X射线产生截面. 实心方点为实验值; 实线为DWBA理论值

    Fig. 8.  The L shell characteristic X-ray production cross sections of Cu target by 5–27 keV electron impact. Solid squares are the experimental values. The solid line is DWBA theoretical value.

    图 10  能量为13—25 keV的电子碰撞Au靶L壳层特征X射线产生截面. 从上到下分别是Lα, Lβ和Lγ子壳层. 其中, 实心形状为实验值; 实线为DWBA理论值

    Fig. 10.  The Lα, Lβ and Lγ shell characteristic X-ray production cross sections of Au target by 13–25 keV electron impact (from top to bottom). The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 6  能量为7—25 keV的电子碰撞Ti靶K壳层电离截面. 实心形状为实验值; 实线为DWBA理论值

    Fig. 6.  The K shell ionization cross sections of Ti target by 7–25 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    图 9  能量为7—27 keV的电子碰撞Ag靶L壳层特征X射线产生截面. 实心形状为实验值; 实线为DWBA理论值

    Fig. 9.  The L shell characteristic X-ray production cross sections of Ag target by 7–27 keV electron impact. The solid shapes are the experimental values. The solid line is DWBA theoretical value.

    表 1  靶原子K壳层荧光产额及X射线分支比(提取自PENELOPE程序数据库)

    Table 1.  Fluorescence yields and X-ray branching ratios of K shell of target atoms (extracted from PENELOPE program database).

    ElementsFluorescence yieldsX-ray branching ratios
    ωKFF
    Al0.03710.99390.0061
    Ti0.21350.89790.1021
    Cu0.43380.89160.1084
    下载: 导出CSV

    表 2  靶原子L壳层荧光产额及Coster-Kronig跃迁概率(提取自PENELOPE程序数据库)

    Table 2.  Fluorescence yields and Coster-Kronig transition coefficients of L shell of target atoms (extracted from PENELOPE program database).

    ElementsFluorescence yieldsCoster-Kronig transition coefficients
    ωL1ωL2ωL3f12f13f23
    Cu0.00190.00920.00880.24020.57220.0089
    Ag0.01490.05470.05700.09210.66460.1604
    Au0.08230.36270.31830.07000.70340.1285
    下载: 导出CSV

    表 3  靶原子L壳层X射线分支比(提取自PENELOPE程序数据库)

    Table 3.  X-ray branching ratios of L shell of target atoms (extracted from PENELOPE program database).

    ElementsX-ray branching ratios
    FFFFF1γF2γ
    Cu0.49330.94300.48210.01210.00000.0131
    Ag0.81590.83910.85090.08140.14940.0862
    Au0.78220.74660.79890.17020.22270.1786
    下载: 导出CSV

    表 4  Al, Ti, Cu的K壳层电离截面实验结果

    Table 4.  Experimental results of K shell ionization cross sections of Al, Ti and Cu.

    Incident energies/keVK-shell ionization cross sections and uncertainties/b
    AlTiCu
    511720±580
    712261±616689±41
    812378±621898±53
    1012050±588993±55151±8
    1210952±5461149±64219±12
    1310526±5231191±67264±15
    159982±4881211±67324±17
    179258±4611236±69377±20
    189019±4491240±70399±21
    208495±4151256±70426±22
    227866±3901248±70448±24
    237629±3791243±69453±24
    257283±3551232±68458±24
    276923±363467±25
    下载: 导出CSV

    表 5  Cu, Ag和Au的L壳层特征X射线产生截面实验结果

    Table 5.  Experimental results of L shell characteristic X-ray production cross sections of Cu, Ag and Au.

    Incident energies/keVL-shell X-ray production cross sections and uncertainties/b
    CuAgAu-LαAu-LβAu-Lγ
    5961±49
    7883±45569±23
    8842±43612±25
    10770±39621±24
    12719±37638±26
    13704±36637±2636.9±2.911.3±1.9
    15653±33626±2579.1±4.434.5±2.5
    17601±31616±25112.9±6.864.4±4.6
    18587±30607±25130.5±8.076.0±5.5
    20558±28598±24148.7±8.386.4±5.211.6±1.3
    22520±27579±23161.8±9.5100.5±6.613.6±1.8
    23505±26571±23168.8±10.0100.2±6.513.8±1.8
    25474±24555±21178.1±9.5110.9±6.116.3±1.4
    27452±23534±21
    下载: 导出CSV
  • [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [3]

    Born M 1926 Z. Physik 38 803Google Scholar

    [4]

    Truhlar D O, Rice J K, Kuppermann A, Trajmar S 1970 Phys. Rev. A 1 778Google Scholar

    [5]

    Shelton W N, Leherissey E S, Madison D H 1971 Phys. Rev. A 3 242Google Scholar

    [6]

    Madison D H, Shelton W N 1973 Phys. Rev. A 7 499Google Scholar

    [7]

    Rainer H 1990 Phys. Lett. A 144 81

    [8]

    Bely O, Schmartz S B 1969 Astron. Astrophys. 1 281

    [9]

    Sampson D H 1986 Phys. Rev. A 34 986Google Scholar

    [10]

    Fontes C J 1993 Phys. Rev. A 47 1009Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [15]

    Shima K, Nakagawa T, Umetani K, Mikumo T 1981 Phys. Rev. A 24 72Google Scholar

    [16]

    Shima K, Okuda M, Suzuki E, Tsubota T, Mikumo T 1983 J. Appl. Phys. 54 1202Google Scholar

    [17]

    Llovet X, Merlet C, Salvat F 2000 J. Phys. B:At. Mol. Opt. Phys. 33 3761Google Scholar

    [18]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304Google Scholar

    [19]

    Moy A, Merlet C, Llovet X, Dugne O 2013 J. Phys. B:At. Mol. Opt. Phys. 46 115202Google Scholar

    [20]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 EPL 118 13001Google Scholar

    [21]

    Liang S, Wu Y, Zhao Z, Xia X G, Ke Z X, Pan M, Wang B Y, Zhang P 2021 Radiat. Phys. Chem. 180 109321Google Scholar

    [22]

    Merlet C, Llovet X, Fernandez-Varea J M 2006 Phys. Rev. A 73 062719Google Scholar

    [23]

    Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708Google Scholar

    [24]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [25]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4001Google Scholar

    [26]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71Google Scholar

    [27]

    Zhao J L, Bai S, An Z, Zhu J J, Tan W J, Liu M T 2020 Radiat. Phys. Chem. 171 108722Google Scholar

    [28]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710Google Scholar

    [29]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [30]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [31]

    李颖涵, 安竹, 朱敬军, 李玲 2020 物理学报 69 133401Google Scholar

    Li Y H, An Z, Zhu J J, Li L 2020 Acta Phys. Sin. 69 133401Google Scholar

    [32]

    Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res. B 506 15Google Scholar

    [33]

    樊启文, 许国基, 杜英辉, 张榕 2008 原子能科学技术 42 925

    Fan Q W, Xu G J, Du Y H, Zhang R 2008 Atom. Energ. Sci. Technol 42 925

    [34]

    Han J F, An Z, Zheng G Q, Bai F, Li Z H, Wang P, Liao X D, Liu M T, Chen S L, Song M J 2018 Nucl. Instrum. Methods Phys. Res. B 418 68Google Scholar

    [35]

    Liu B, Ding W, An Z, Zhu J J, Zhang Z, Li L, Lin W P 2021 Fusion Eng. Des. 172 112751Google Scholar

    [36]

    Sabbatucci L, Scot V, Fernandez J E 2014 Radiat. Phys. Chem. 104 372Google Scholar

    [37]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [38]

    Perkins S T, Cullen D E, Chen M H, Hubbell J H, Rathkopf J, Scofield J 1991 Report UCRL-50400 30 Lawrence Livermore National Laboratory, Livermore, CA

    [39]

    Mei C S, Wu Y, Yuan Y, Chang C H, Qian Z C, Zhu J J, Moharram K 2016 J. Phys. B: At. Mol. Opt. Phys. 49 245204

    [40]

    Silvina P L, Vasconcellos M A Z, Ruth H, Jorge C T 2012 Phys. Rev. A 86 042701Google Scholar

    [41]

    He F Q, Peng X F, Long X G, Luo Z M, An Z 1997 Nucl. Instrum. Methods Phys. Res. B 129 445Google Scholar

    [42]

    周长庚, 付玉川, 安竹, 罗正明 2000 强激光与粒子束 12 601

    Zhou C G, Fu Y C, An Z, Luo Z M 2000 High Power Laser and Particle Beams 12 601

    [43]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 Radiat. Phys. Chem. 122 66Google Scholar

    [44]

    Campbell J L 2003 At. Data Nucl. Data Tables 85 291Google Scholar

    [45]

    Wu Y, An Z, Liu M T, Duan Y M, Tang C H, Luo Z M 2004 J. Phys. B:At. Mol. Opt. Phys. 37 4527Google Scholar

    [46]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006Google Scholar

    [47]

    Campos C S, Vasconcellos M A Z 2002 Phys. Rev. A 66 012719Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [4] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布. 物理学报, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [5] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] 李颖涵, 安竹, 朱敬军, 李玲. keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究. 物理学报, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [7] 钱宇瑞, 吴英, 杨夏童, 陈秋香, 尤俊栋, 王宝义, 况鹏, 张鹏. 8-9.5 keV正电子致Ti的K壳层电离截面的实验研究. 物理学报, 2018, 67(19): 192101. doi: 10.7498/aps.67.20180666
    [8] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究. 物理学报, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [13] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] 余志强, 谢泉, 肖清泉, 赵珂杰. 基于Bohr-Sommerfeld量子理论的X射线光谱分析. 物理学报, 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
计量
  • 文章访问数:  6119
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 修回日期:  2022-05-11
  • 上网日期:  2022-08-18
  • 刊出日期:  2022-09-05

/

返回文章
返回