-
基于SiGe合金的电子器件具有广阔的空间应用前景,但是也会受到空间环境中粒子辐照损伤的威胁。本文通过蒙特卡罗模拟研究了1~1000 MeV质子对SiGe合金和SiGe/Si异质结构造成的位移损伤。结果表明,低能质子(1~100 MeV)在SiGe合金中主要通过库伦散射和弹性碰撞产生Si初级离位原子(primary knock-on atom,PKA)和Ge PKA,损伤能分布在质子射程末端形成一个明显的布拉格峰,而高能质子(300~1000 MeV)在SiGe合金中的非弹性碰撞更加显著,出现更多的PKA类型,损伤能主要分布在质子射程前端。同时,质子在SiGe/Si异质结构中的损伤能随质子能量的增大呈现出整体下降的趋势,反向入射质子(10 MeV和100 MeV)比正向入射质子在界面处Si基底一侧产生的损伤能更大,导致界面两侧的损伤能起伏更为剧烈,可能造成更加严重的位移损伤。此外,Ge含量会影响质子在SiGe合金中的PKA类型、损伤能分布和非电离能量损失,随着Ge含量的增大,高能质子在SiGe合金中的非电离能量损失逐渐变大,但是,Ge含量对质子在小尺寸SiGe/Si异质结构中总损伤能的影响不显著。总体上,这项工作说明了质子在SiGe合金和SiGe/Si异质结构中产生的位移损伤和质子能量密切相关,低能质子倾向于产生更多的自反冲原子,并在小尺寸SiGe/Si异质结构中产生位移损伤,为SiGe合金基电子器件的位移损伤效应研究和抗辐照加固技术提供了一定的指导意义。SiGe-based electronics possess a promising prospect in the space exploration field owing to a controllable bandgap of SiGe alloys and high compatibility with Si technology, but they may be susceptible to energetic particles in space radiation environments. In order to interpret the potential displacement damage in SiGe-based electronics, Monte Carlo simulations were conducted to investigate the displacement damage in SiGe alloys and SiGe/Si heterostructures induced by 1 ~ 1000 MeV protons. The displacement damage in SiGe alloys was explored via the energy spectra and species as well as the pertinent distribution of damage energy of proton-induced primary knock-on atoms (PKAs), while the displacement damage in SiGe/Si heterostructures was probed by the distribution of damage energy caused by forward- and reverse-incident protons. Low-energy protons (1 ~ 100 MeV) primarily generated Si PKAs and Ge PKAs in SiGe alloys through Coulomb scattering and elastic collisions, and the corresponding damage energy distribution presented a distinct Bragg peak at the end of the proton range. Meanwhile, high-energy protons (300 ~ 1000 MeV) aroused significant inelastic collisions in SiGe alloys, leading to a sequence of other PKA types, and the related damage energy distribution was predominantly located at the front of the proton range. In addition, the damage energy in SiGe/Si heterostructures generally decreased as the proton energy increased, and reverse-incident protons (10 MeV and 100 MeV) caused greater damage energy on the side of Si substrate at the interface than forward-incident protons, resulting in more noticeable fluctuations in damage energy on both sides of the interface than forward-incident protons, which could lead to severe displacement damage. Besides, Ge content could affect the PKA species, damage energy distribution, and nonionizing energy loss. As for high-energy protons, a high Ge content may lead to a great nonionizing energy loss, whereas the Ge content had an insignificant effect on the total damage energy of small-size SiGe/Si heterostructures. In summary, this work indicates that the proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures is closely dependent on the proton energy, and low-energy protons were prone to generate massive self-recoil atoms and induce significant displacement damage in small-size SiGe/Si heterostructures, which will provide conducive insights into research on the displacement damage effect and radiation hardening techniques of SiGe-based electronics.
-
Keywords:
- SiGe /
- Heterostructure /
- Proton /
- Displacement damage /
- Monte Carlo simulation
-
[1] Li L, Bi R, Dong Z Y, Ye C Q, Xie J, Wang C L, Li X M, Pey K L, Li M, Wu X 2024Electron 2 e32
[2] Böck J, Aufinger K, Boguth S, Dahl C, Knapp H, Liebl W, Manger D, Meister T F, Pribil A, Wursthorn J, Lachner R, Heinemann B, Rücker H, Fox A, Barth R, Fischer G, Marschmeyer S, Schmidt D, Trusch A, Wipf C 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM, 26-28 Oct. 2015 p121-124
[3] Li P, Dong Z Y, Guo H X, Zhang F Q, Guo Y X, Peng Z G, He C H 2024Acta Phys. Sin. 73 044301(in Chinese) [李培,董志勇,郭红霞,张凤祁,郭亚鑫,彭治钢,贺朝会2024物理学报73 044301]
[4] Ma Y, Zhang P J, Xu X L, Chen X, Yi X H 2023Microelectron. 53 272(in Chinese) [马羽,张培健,徐学良,陈仙,易孝辉2023微电子学53 272]
[5] Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W 2021J. Environ. Sci. Health, Part C 39 113
[6] Cressler J D 2013IEEE Trans. Nucl. Sci. 60 1992
[7] He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024Acta Phys. Sin. 73 052402(in Chinese) [何欢,白雨蓉,田赏,刘方,臧航,柳文波,李培,贺朝会2024物理学报73 052402]
[8] Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021Acta Phys. Sin. 70 172401(in Chinese) [白雨蓉,李永宏,刘方,廖文龙,何欢,杨卫涛,贺朝会2021物理学报70 172401]
[9] Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003IEEE Trans. Nucl. Sci. 50 1924
[10] Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014Acta Phys. Sin. 63 066102(in Chinese) [朱金辉,韦源,谢红刚,牛胜利,黄流兴2014物理学报63 066102]
[11] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013Nucl. Instrum. Methods Phys. Res., Sect. B 312 77
[12] Li Y H, Kou B C, Zhao Y L, He C H, Yu Q K 2018At. Energ. Sci. Technol. 52 1735(in Chinese) [李永宏,寇勃晨,赵耀林,贺朝会,于庆奎2018原子能科学技术52 1735]
[13] Fan J Q, Tan Q, Hao J H 2022AIP Adv. 12 095304
[14] Bai Y R, Li P, He H, Liu F, Li W, He C H 2024Acta Phys. Sin. 73 052401(in Chinese) [白雨蓉,李培,何欢,刘方,李薇,贺朝会2024物理学报73 052401]
[15] Shen S S, He C H, Li Y H 2018Acta Phys. Sin. 67 182401(in Chinese) [申帅帅,贺朝会,李永宏2018物理学报67 182401]
[16] Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022J. Terahertz Sci. Electron. Inf. Technol. 20 523(in Chinese) [李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒2022太赫兹科学与电子信息学报20 523]
[17] Zhang J X, Guo H X, Lyu L, Wang X, Pan X Y 2022J. Terahertz Sci. Electron. Inf. Technol. 20 869(in Chinese) [张晋新,郭红霞,吕玲,王信,潘霄宇2022太赫兹科学与电子信息学报20 869]
[18] Pan X Y, Guo H X, Feng Y H, Liu Y N, Zhang J X, Li Z, Luo Y H, Zhang F Q, Wang T, Zhao W, Ding L L, Xu J Y 2022Sci. China: Technol. Sci. 65 1193
[19] Sotskov D I, Elesin V V, Kuznetsov A G, Zhidkov N M, Metelkin I O, Amburkin K M, Amburkin D M, Usachev N A, Boychenko D V, Elesina V V 2020IEEE Trans. Nucl. Sci. 67 2396
[20] Sotskov D I, Kuznetsov A G, Elesin V V, Selishchev I A, Kotov V N, Nikiforov A Y 202121th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 13-17 Sept. 2021 p1-4
[21] Li P, He C H, Guo H X, Li Y H, Wei J N 2022IEEE Trans. Nucl. Sci. 69 1051
[22] Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L, El-Diwany M, Mitchell C, Rockett L, Bach T, Lawrence R, Haddad N 2006Solid-State Electron. 50 181
[23] Diez S, Lozano M, Pellegrini G, Campabadal F, Diez I, Knoll D, Heinemann B, Ullan M 2009IEEE Trans. Nucl. Sci. 56 1931
[24] Li Z Q, Liu S H, Adekoya M A, Ren X T, Zhang J, Liu S Y, Li L 2021Microelectron. Reliab. 127 114396
[25] Jarrin T, Jay A, Raine M, Mousseau N, Hémeryck A, Richard N 2020IEEE Trans. Nucl. Sci. 67 1273
[26] Xing T, Liu S H, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Chen W, Li K, Zheng X H 2023Radiat. Eff. Defects Solids 178 1384
[27] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016Nucl. Instrum. Methods Phys. Res., Sect. A 835 186
[28] Douglas J P 2004Semicond. Sci. Technol. 19 R75
[29] Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017IEEE Trans. Nucl. Sci. 64 133
[30] Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997IEEE Trans. Nucl. Sci. 44 2150
[31] Mesick K E, Bartlett K D, Coupland D D S, Stonehill L C 2019Nucl. Instrum. Methods Phys. Res., Sect. A 948 162774
[32] Ye E L, Lai Y F, Shen C X, Hou Y J, Nan H J 2025Radiat. Phys. Chem. 228 112417
[33] Robinson M T, Torrens I M 1974Phys. Rev. B 9 5008
[34] Akkerman A, Barak J 2006IEEE Trans. Nucl. Sci. 53 3667
[35] Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H, Chen W 2023Nucl. Instrum. Methods Phys. Res., Sect. B 545 165144
[36] Ziegler J F, Ziegler M D, Biersack J P 2010Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818
计量
- 文章访问数: 24
- PDF下载量: 0
- 被引次数: 0