搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiGe合金和SiGe/Si异质结构质子位移损伤的蒙特卡罗模拟

邢天 刘书焕 王炫 王超 周俊烨 张锡民 陈伟

引用本文:
Citation:

SiGe合金和SiGe/Si异质结构质子位移损伤的蒙特卡罗模拟

邢天, 刘书焕, 王炫, 王超, 周俊烨, 张锡民, 陈伟

Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures

XING Tian, LIU Shuhuan, WANG Xuan, WANG Chao, ZHOU Junye, ZHANG Ximin, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于SiGe合金的电子器件具有广阔的空间应用前景, 但是也受到空间环境中粒子辐照损伤的威胁. 本文通过蒙特卡罗模拟研究了1—1000 MeV质子对SiGe合金和SiGe/Si异质结构造成的位移损伤. 结果表明, 低能质子(1—100 MeV)在SiGe合金中主要通过库仑散射和弹性碰撞产生Si初级离位原子(primary knock-on atom, PKA)和Ge PKA, 损伤能分布在质子射程末端形成一个明显的布拉格峰, 而高能质子(300—1000 MeV)在SiGe合金中的非弹性碰撞更加显著, 出现更多的PKA类型, 损伤能主要分布在质子射程前端. 同时, 质子在SiGe/Si异质结构中的损伤能随质子能量的增大呈现出整体下降的趋势, 反向入射质子(10 MeV和100 MeV)比正向入射质子在界面处Si基底一侧产生的损伤能更大, 导致界面两侧的损伤能起伏更为剧烈, 可能造成更加严重的位移损伤. 此外, Ge含量会影响质子在SiGe合金中的PKA类型、损伤能分布和非电离能量损失, 随着Ge含量的增大, 高能质子在SiGe合金中的非电离能量损失逐渐变大, 但是, Ge含量对质子在小尺寸SiGe/Si异质结构中总损伤能的影响不显著. 总体上, 这项工作说明了质子在SiGe合金和SiGe/Si异质结构中产生的位移损伤和质子能量密切相关, 低能质子倾向于产生更多的自反冲原子, 并在小尺寸SiGe/Si异质结构中产生位移损伤, 为SiGe合金基电子器件的位移损伤效应研究和抗辐照加固技术提供了数据支持.
    SiGe-based electronics have a promising prospect in the field of space exploration due to the controllable bandgap of SiGe alloys and high compatibility with Si technology. However, they may be susceptible to the influence of energetic particles in space radiation environments. In order to explain the potential displacement damage in SiGe-based electronics, Monte Carlo simulations are conducted to investigate the displacement damage in SiGe alloys and SiGe/Si heterostructures induced by 1–1000 MeV protons. The displacement damage in SiGe alloys is studied by the energy spectra and types of proton-induced primary knock-on atoms (PKAs) and the related damage energy distribution, while the displacement damage in SiGe/Si heterostructure is studied by the damage energy distribution caused by forward- and reverse-incident protons. Low-energy protons (1–100 MeV) are primarily generated by Si PKAs and Ge PKAs in SiGe alloys through Coulomb scattering and elastic collisions, and the corresponding damage energy distribution exhibits a distinct Bragg peak at the end of the proton range. Meanwhile, high-energy protons (300–1000 MeV) cause significant inelastic collisions in SiGe alloys, leading to a series of other PKA types, with the associated damage energy distribution predominantly located in the front of the proton range. In addition, the damage energy in SiGe/Si heterostructures generally decreases as the proton energy increases, and compared with the forward-incident protons, the reverse-incident protons (10 MeV and 100 MeV) cause greater damage energy on the side of Si substrate at the interface, and result in more noticeable fluctuations in damage energy on both sides of the interface, leading to severe displacement damage. Besides, Ge content can affect the PKA species, damage energy distribution, and nonionizing energy loss. As for high-energy protons, high Ge content may lead to a great nonionizing energy loss, whereas the Ge content has an insignificant effect on the total damage energy of small-size SiGe/Si heterostructures. In summary, this work indicates that the proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures is greatly dependent on the proton energy, and low-energy protons are prone to generating massive self-recoil atoms, inducing significant displacement damage in small-size SiGe/Si heterostructures, which will provide theoretical basis and reference for studying displacement damage effect and developing radiation hardening techniques of SiGe-based electronics.
  • 图 1  质子入射靶材示意图(h为SiGe合金层的厚度) (a) SiGe合金; (b) SiGe/Si异质结构

    Fig. 1.  A schematic diagram of protons incident on the targets (h is the thickness of the SiGe layer): (a) SiGe alloy; (b) SiGe/Si heterostructure.

    图 2  质子在Si, Ge和SiGe合金中的射程和非电离能量损失 (a)射程; (b)非电离能量损失; (c) 图(b)中区域1的局部放大图; (d) 图(b)中区域2的局部放大图

    Fig. 2.  Projected range and the NIEL of protons in Si, Ge, and SiGe alloys: (a) Projected range; (b) NIEL; (c) the mangified view of Zone 1 in panel (b); (d) the mangified view of Zone 2 in panel (b).

    图 3  质子在SiGe合金中产生的PKA能谱和前6种PKA比例 (a) Si0.3Ge0.7的PKA能谱; (b) Si0.3Ge0.7的PKA比例; (c) Si0.5Ge0.5的PKA能谱; (d) Si0.5Ge0.5的PKA比例; (e) Si0.7Ge0.3的PKA能谱; (f) Si0.7Ge0.3的PKA比例

    Fig. 3.  Energy spectra of proton-induced PKAs and the proportion of top six types of PKAs in SiGe alloys: (a) PKA enegy spectra of Si0.3Ge0.7; (b) PKA proportions of Si0.3Ge0.7; (c) PKA enegy spectra of Si0.5Ge0.5; (d) PKA proportions of Si0.5Ge0.5; (e) PKA enegy spectra of Si0.7Ge0.3; (f) PKA proportions of Si0.7Ge0.3.

    图 4  质子在SiGe合金中产生的损伤能随入射深度的分布 (a) 1 MeV质子; (b) 10 MeV质子; (c) 100 MeV质子; (d) 300 MeV质子; (e) 500 MeV质子; (f) 1000 MeV质子

    Fig. 4.  Distribution of damage energy in SiGe alloys produced by protons along the penetration depth: (a) 1 MeV proton; (b) 10 MeV proton; (c) 100 MeV proton; (d) 300 MeV proton; (e) 500 MeV proton; (f) 1000 MeV proton.

    图 5  质子在SiGe合金中通过库仑散射产生的损伤能随入射深度的分布 (a) 1 MeV质子; (b) 10 MeV质子; (c) 100 MeV质子; (d) 300 MeV质子; (e) 500 MeV质子; (f) 1000 MeV质子

    Fig. 5.  Distribution of damage energy in SiGe alloys produced by protons via the Coulomb scattering along the penetration depth: (a) 1 MeV proton; (b) 10 MeV proton; (c) 100 MeV proton; (d) 300 MeV proton; (e) 500 MeV proton; (f) 1000 MeV proton.

    图 6  质子在SiGe/Si异质结构中产生的损伤能随入射深度的分布 (a)质子正向入射Si0.3Ge0.7/Si; (b)质子反向入射Si0.3Ge0.7/Si; (c)质子正向入射Si0.5Ge0.5/Si; (d)质子反向入射Si0.5Ge0.5/Si; (e)质子正向入射Si0.7Ge0.3/Si; (f)质子反向入射Si0.7Ge0.3/Si

    Fig. 6.  Distribution of damage energy in SiGe/Si heterostructures produced by protons along the penetration depth: (a) Proton incident forward on Si0.3Ge0.7/Si; (b) proton incident reversely on Si0.3Ge0.7/Si; (c) proton incident forward on Si0.5Ge0.5/Si; (d) proton incident reversely on Si0.5Ge0.5/Si; (e) proton incident forward on Si0.7Ge0.3/Si; (f) proton incident reversely on Si0.7Ge0.3/Si.

    图 7  SiGe/Si异质结构的SiGe合金层和对照组Si层中产生的总损伤能 (a)正向入射; (b)反向入射

    Fig. 7.  Total damage energy produced in the SiGe layer of SiGe/Si heterostructures and in the Si layer of control groups: (a) Forward incidence; (b) reverse incidence.

  • [1]

    Li L, Bi R, Dong Z Y, Ye C Q, Xie J, Wang C L, Li X M, Pey K L, Li M, Wu X 2024 Electron 2 e32Google Scholar

    [2]

    Böck J, Aufinger K, Boguth S, Dahl C, Knapp H, Liebl W, Manger D, Meister T F, Pribil A, Wursthorn J, Lachner R, Heinemann B, Rücker H, Fox A, Barth R, Fischer G, Marschmeyer S, Schmidt D, Trusch A, Wipf C 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM Octorber 26—28, 2015 pp121—124

    [3]

    李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会 2024 物理学报 73 044301Google Scholar

    Li P, Dong Z Y, Guo H X, Zhang F Q, Guo Y X, Peng Z G, He C H 2024 Acta Phys. Sin. 73 044301Google Scholar

    [4]

    马羽, 张培健, 徐学良, 陈仙, 易孝辉 2023 微电子学 53 272

    Ma Y, Zhang P J, Xu X L, Chen X, Yi X H 2023 Microelectron. 53 272

    [5]

    Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W 2021 J. Environ. Sci. Health Part C 39 113Google Scholar

    [6]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992Google Scholar

    [7]

    何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会 2024 物理学报 73 052402Google Scholar

    He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402Google Scholar

    [8]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [9]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [10]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [11]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 312 77Google Scholar

    [12]

    李永宏, 寇勃晨, 赵耀林, 贺朝会, 于庆奎 2018 原子能科学技术 52 1735Google Scholar

    Li Y H, Kou B C, Zhao Y L, He C H, Yu Q K 2018 At. Energ. Sci. Technol. 52 1735Google Scholar

    [13]

    Fan J Q, Tan Q, Hao J H 2022 AIP Adv. 12 095304Google Scholar

    [14]

    白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会 2024 物理学报 73 052401Google Scholar

    Bai Y R, Li P, He H, Liu F, Li W, He C H 2024 Acta Phys. Sin. 73 052401Google Scholar

    [15]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [16]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [17]

    张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869Google Scholar

    Zhang J X, Guo H X, Lü L, Wang X, Pan X Y 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 869Google Scholar

    [18]

    Pan X Y, Guo H X, Feng Y H, Liu Y N, Zhang J X, Li Z, Luo Y H, Zhang F Q, Wang T, Zhao W, Ding L L, Xu J Y 2022 Sci. China: Technol. Sci. 65 1193Google Scholar

    [19]

    Sotskov D I, Elesin V V, Kuznetsov A G, Zhidkov N M, Metelkin I O, Amburkin K M, Amburkin D M, Usachev N A, Boychenko D V, Elesina V V 2020 IEEE Trans. Nucl. Sci. 67 2396Google Scholar

    [20]

    Sotskov D I, Kuznetsov A G, Elesin V V, Selishchev I A, Kotov V N, Nikiforov A Y 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS) September13-17 2021 pp1-4

    [21]

    Li P, He C H, Guo H X, Li Y H, Wei J N 2022 IEEE Trans. Nucl. Sci. 69 1051Google Scholar

    [22]

    Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L, El-Diwany M, Mitchell C, Rockett L, Bach T, Lawrence R, Haddad N 2006 Solid-State Electron. 50 181Google Scholar

    [23]

    Diez S, Lozano M, Pellegrini G, Campabadal F, Diez I, Knoll D, Heinemann B, Ullan M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar

    [24]

    Li Z Q, Liu S H, Adekoya M A, Ren X T, Zhang J, Liu S Y, Li L 2021 Microelectron. Reliab. 127 114396Google Scholar

    [25]

    Jarrin T, Jay A, Raine M, Mousseau N, Hémeryck A, Richard N 2020 IEEE Trans. Nucl. Sci. 67 1273Google Scholar

    [26]

    Xing T, Liu S H, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Chen W, Li K, Zheng X H 2023 Radiat. Eff. Defects Solids 178 1384Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [28]

    Douglas J P 2004 Semicond. Sci. Technol. 19 R75Google Scholar

    [29]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [30]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [31]

    Mesick K E, Bartlett K D, Coupland D D S, Stonehill L C 2019 Nucl. Instrum. Methods Phys. Res. , Sect. A 948 162774Google Scholar

    [32]

    Ye E L, Lai Y F, Shen C X, Hou Y J, Nan H J 2025 Radiat. Phys. Chem. 228 112417Google Scholar

    [33]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [34]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [35]

    Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H, Chen W 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 545 165144Google Scholar

    [36]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. , Sect. B 268 1818Google Scholar

  • [1] 廖良欣, 张结印, 刘方泽, 颜谋回, 明铭, 符彬啸, 张新定, 张建军. 基于转移SiGe薄膜上的高质量Si/SiGe异质结. 物理学报, doi: 10.7498/aps.74.20250164
    [2] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, doi: 10.7498/aps.73.20231499
    [3] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, doi: 10.7498/aps.73.20241246
    [4] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, doi: 10.7498/aps.73.20231671
    [5] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, doi: 10.7498/aps.71.20212041
    [6] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, doi: 10.7498/aps.71.20211722
    [7] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, doi: 10.7498/aps.70.20210303
    [8] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, doi: 10.7498/aps.69.20200714
    [9] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析. 物理学报, doi: 10.7498/aps.67.20171701
    [10] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, doi: 10.7498/aps.67.20181095
    [11] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽. 物理学报, doi: 10.7498/aps.65.014214
    [12] 冯松, 薛斌, 李连碧, 翟学军, 宋立勋, 朱长军. 一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析. 物理学报, doi: 10.7498/aps.65.054201
    [13] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, doi: 10.7498/aps.65.084209
    [14] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, doi: 10.7498/aps.64.024220
    [15] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, doi: 10.7498/aps.63.066102
    [16] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, doi: 10.7498/aps.62.117103
    [17] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, doi: 10.7498/aps.59.4136
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, doi: 10.7498/aps.55.1997
    [19] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, doi: 10.7498/aps.55.3546
    [20] 王庆学. 异质结构的应变和应力分布模型研究. 物理学报, doi: 10.7498/aps.54.3757
计量
  • 文章访问数:  569
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-10
  • 修回日期:  2025-06-26
  • 上网日期:  2025-07-01

/

返回文章
返回