搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间重离子入射磷化铟的位移损伤模拟

白雨蓉 李永宏 刘方 廖文龙 何欢 杨卫涛 贺朝会

引用本文:
Citation:

空间重离子入射磷化铟的位移损伤模拟

白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会

Simulation of displacement damage in indium phosphide induced by space heavy ions

Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui
PDF
HTML
导出引用
  • 磷化铟(InP)具备电子迁移率高、禁带宽度大、耐高温、耐辐射等特性, 是制备空间辐射环境下电子器件的重要材料. 随着电子器件小型化, 单个重离子在器件灵敏体积内产生的位移损伤效应可能会导致其永久失效. 因此, 本文使用蒙特卡罗软件Geant4模拟空间重离子(碳、氮、氧、铁)在InP材料中的输运过程, 计算重离子的非电离能量损失(non-ionizing energy loss, NIEL), 得到重离子入射InP材料的位移损伤规律, 主要结论有: 1) NIEL值与原子序数的平方成正比, 重离子原子序数越大, 在InP材料中产生位移损伤的能力越强; 2)重离子NIEL比次级粒子NIEL大3—4个量级, 而NIEL与核弹性碰撞产生的反冲原子的非电离损伤能成正比, 说明重离子在材料中撞出的初级反冲原子是导致InP材料中产生位移损伤的主要原因; 3)空间辐射环境中重离子数目占比少, 一年中重离子在0.0125 mm3 InP中产生的总非电离损伤能占比为2.52%, 但重离子NIEL值是质子和α粒子的2—30倍, 仍需考虑单个空间重离子入射InP电子器件产生的位移损伤效应. 4)低能重离子在较厚材料中完全沉积导致平均非电离损伤能分布不均匀(前高后低), 使NIEL值随材料厚度的增大而略微减小, 重离子位移损伤严重区域分布在材料前端. 研究结果为InP材料在空间辐射环境中的应用打下基础.
    Indium phosphide (InP) has the characteristics of high electron mobility, large band gap, high temperature resistance, and radiation resistance. It is an important material of electronic devices in the space radiation environment. With the miniaturization of electronic devices, the displacement damage (DD) effect caused by a single heavy ion in the device may give rise to permanent failure. Therefore, this paper uses Monte Carlo software Geant4 to simulate the transportation process of space heavy ions(C, N, O, Fe) in InP. The non-ionizing energy loss (NIEL) of heavy ions is calculated for getting the information about displacement damage. Some conclusions are drawn as follows. 1) NIEL is proportional to the square of the atomic number, which means that single Fe can make severe displacement damage in InP. 2) The heavy ions NIEL is 3 to 4 orders of magnitude larger than PKA NIEL. The NIEL is proportional to the non-ionizing damage energy of recoil atoms produced by nuclear elastic collision, which indicates that the primary recoil atoms produced by heavy ions are the main cause of InP DD. 3) The number of heavy ions in space is small, so the proportion of total non-ionizing damage energy produced by heavy ions in 0.0125 mm3 InP is only 2.56% in one year. But the NIEL of heavy ions NIEL is 2–30 times that of protons and α particles, so the DD effect caused by single heavy ion incident on InP electronic device still needs to be considered. 4) NIEL decreases slightly with the increase of material thickness. The reason is that low-energy heavy ions are completely deposited in the front of InP, resulting in a non-uniform distribution of non-ionizing energy deposited in the material. Analyzing the dependence of mean DD energy with depth, we find that mean DD energy decreases with incident depth increasing, which means that the most severe DD region of heavy ions in InP is in the front of material.
      通信作者: 贺朝会, hechaohui@xjtu.edu.cn
    • 基金项目: 基础加强计划(批准号: 2019-JCJQ-ZD-267)资助的课题
      Corresponding author: He Chao-Hui, hechaohui@xjtu.edu.cn
    • Funds: Project supported by the Basic Strength Program of China (Grant No. 2019-JCJQ-ZD-267)
    [1]

    Yamaguchi M, Araki K, Kojima N, Ohshita Y 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) Calgary, OR, Canada, June 15–August 21, 2020 pp149–151

    [2]

    O’Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148Google Scholar

    [3]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [4]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [5]

    Yamaguchi M, Uemura C, Yamamoto A 1984 J. Appl. Phys. 55 1429Google Scholar

    [6]

    Yamaguchi M, Ando K 1988 J. Appl. Phys. 63 5555Google Scholar

    [7]

    Walters R J, Messenger S R, Summers G P, Burke E A, Keavney C J 1991 IEEE Trans. Nucl. Sci. 38 1153Google Scholar

    [8]

    Keavney C J, Walters R J, Drevinsky P J 1993 J. Appl. Phys. 73 60Google Scholar

    [9]

    Walters R J 1995 Microelectronics J. 26 697Google Scholar

    [10]

    Messenger S R, County B, Road I H 1996 Solid. State. Electron. 39 797Google Scholar

    [11]

    Yamaguchi M, Takamoto T, Ohmori M 1997 J. Appl. Phys. 81 1116Google Scholar

    [12]

    Walters R J, Messenger S R, Summers G P, Romero M J, Al-Jassim M M, Araújo D, Garcia R 2001 J. Appl. Phys. 90 3558Google Scholar

    [13]

    Herre O, Wesch W, Wendler E, Gaiduk P, Komarov F 1998 Phys. Rev. B-Condens. Matter Mater. Phys. 58 4832Google Scholar

    [14]

    Gasparotto A, Carnera A, Frigeri C, Priolo F, Fraboni B, Camporese A, Rossetto G 1999 J. Appl. Phys. 85 753Google Scholar

    [15]

    Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 78 054111Google Scholar

    [16]

    Schnohr C S, Kluth P, Giulian R, Llewellyn D J, Byrne A P, Cookson D J, Ridgway M C 2010 Phys. Rev. B-Condens. Matter Mater. Phys. 81 1Google Scholar

    [17]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [20]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [21]

    Garcia A R, Mendoza E, Cano-Ott D, Nolte R, Martinez T, Algora A, Tain J L, Banerjee K, Bhattacharya C 2017 Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 868 73Google Scholar

    [22]

    李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹 2013 物理学报 62 058502Google Scholar

    Li X J, Liu M C, Sun Z L, Lan M J, Xiao L Y, He S Y 2013 Acta Pyhs. Sin. 62 058502Google Scholar

    [23]

    Mendenhall M H, Weller R A 2005 Nucl. Instruments Methods Phys. Res. B. 227 420Google Scholar

    [24]

    Weller R A, Mendenhall M H, Fleetwod D M 2004 Trans. Nucl. Sci. 51 3669Google Scholar

    [25]

    Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [26]

    Summers G P, Burke E A, Xapsos M A 1995 Radiat. Meas. 24 1Google Scholar

    [27]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [28]

    Robinson M T, Torrens L M 1974 Phys. Rev. B 8 15Google Scholar

    [29]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [30]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 260 529Google Scholar

    [31]

    Jun I, Kim W, Evans R 2009 IEEE Trans. Nucl. Sci. 56 3229Google Scholar

    [32]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Tech. 34 529

    [33]

    Dale C G, Chen L, McNulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 197Google Scholar

    [34]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. B 268 1818Google Scholar

    [35]

    Xapsos M A, Burke E A, Badavi F F, Townsend L W, Wilson J W, Jun I 2004 IEEE Trans. Nucl. Sci. 51 3250Google Scholar

  • 图 1  能谱图 (a)宇宙射线能谱图; (b) 100 mil Al屏蔽后的宇宙射线能谱图

    Fig. 1.  Energy spectrum: (a) Cosmic ray energy spectrum; (b) 100 mil Al shielded cosmic ray energy spectrum.

    图 2  1−300 MeV质子入射(a) Si 和(b) InP的NIEL计算值

    Fig. 2.  1−300 MeV proton NIEL for (a) Si and (b) InP.

    图 3  不同种类重离子(a) C, (b) N, (c) O, (d) Fe入射5000 μm InP产生的平均非电离损伤能随深度分布图

    Fig. 3.  Distribution average non-ionization damage energy of different heavy ions (a) C, (b) N, (c) O, (d) Fe with depth in 5000 μm InP

    表 1  Geant4模拟相关参数和NIEL计算值

    Table 1.  Geant4 Simulated parameters and NIEL.

    质子能量/MeVSi射程/mmSi厚度/mmNIEL/(MeV·cm2·g–1)InP射程/mmInP厚度/mmNIEL/(MeV·cm2·g–1)
    10.0160.00180.070040.0130.00150.0558
    20.0480.00500.037630.0380.00400.0302
    50.2160.02200.015190.1640.01800.0135
    100.7090.07500.009680.5180.05500.0079
    202.3900.24000.007591.6800.20000.0051
    5012.1801.22000.004838.3201.00000.0037
    10041.6204.18000.0026527.5303.00000.0034
    200138.63014.00000.0014890.2709.50000.0032
    300273.57028.00000.00138176.86018.00000.0033
    下载: 导出CSV

    表 2  重离子入射InP材料的设计方案

    Table 2.  Design scheme of heavy ion incident on InP.

    粒子种类粒子数目InP材料厚度/μm
    方法一H106500
    He106500
    C106500
    N106500
    O106500
    Fe106500
    方法二H12728631500
    He1187039500
    C30945500
    N8389500
    O29305500
    Fe3200500
    方法三C106500, 1000, 5000
    N106500, 1000, 5000
    O106500, 1000, 5000
    Fe106500, 1000, 5000
    下载: 导出CSV

    表 3  宇宙射线粒子及其PKA在500 μm 厚的InP中产生的NIEL统计表

    Table 3.  NIEL of cosmic ray particles and their PKA produced in 500 μm InP.

    粒子
    种类
    统计
    种类
    NIEL/
    (MeV·cm2·g–1)
    NIEL
    占比/%
    变异
    系数
    HH0.00431698.3650.03953
    PKA7.1739×10–51.6350.08716
    HeHe0.0086196.4430.02208
    PKA3.17556×10–43.5570.04532
    CC0.016599.9060.01073
    PKA1.54785×10–50.0940.20895
    NN0.0179899.9280.01309
    PKA1.2888×10–50.0720.30657
    OO0.0213299.9360.01548
    PKA1.3566×10–50.0640.20082
    FeFe0.1192299.9760.00507
    PKA2.9332×10–50.0240.15543
    下载: 导出CSV

    表 4  不同粒子在0.125 mm3 InP产生的非电离损伤能统计表

    Table 4.  Total non-ionization damage energy produced by cosmic particles in 0.125 mm3 InP.

    粒子
    种类
    入射
    数目
    非电离
    损伤能/MeV
    非电离损
    伤能占比/%
    变异
    系数
    H1272863112380.5582.140.01366
    He11870392312.7615.340.02426
    C30945116.9950.780.07564
    N838933.990.230.01548
    O29304142.740.950.05274
    Fe320086.270.560.01301
    下载: 导出CSV

    表 5  重离子在500, 1000, 5000 μm InP产生的NIEL统计表

    Table 5.  NIEL of heavy ion produced in 500, 1000, 5000 μm InP.

    重离子种类材料厚度/μmNIEL均值变异系数
    C5000.01650.01073
    10000.016390.00631
    50000.015390.00664
    N5000.017980.01309
    10000.017550.01031
    50000.016280.00723
    O5000.021320.01548
    10000.020870.00724
    50000.018780.00349
    Fe5000.119220.00507
    10000.115910.00382
    50000.094860.00303
    下载: 导出CSV
  • [1]

    Yamaguchi M, Araki K, Kojima N, Ohshita Y 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) Calgary, OR, Canada, June 15–August 21, 2020 pp149–151

    [2]

    O’Neill P M 2010 IEEE Trans. Nucl. Sci. 57 3148Google Scholar

    [3]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [4]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [5]

    Yamaguchi M, Uemura C, Yamamoto A 1984 J. Appl. Phys. 55 1429Google Scholar

    [6]

    Yamaguchi M, Ando K 1988 J. Appl. Phys. 63 5555Google Scholar

    [7]

    Walters R J, Messenger S R, Summers G P, Burke E A, Keavney C J 1991 IEEE Trans. Nucl. Sci. 38 1153Google Scholar

    [8]

    Keavney C J, Walters R J, Drevinsky P J 1993 J. Appl. Phys. 73 60Google Scholar

    [9]

    Walters R J 1995 Microelectronics J. 26 697Google Scholar

    [10]

    Messenger S R, County B, Road I H 1996 Solid. State. Electron. 39 797Google Scholar

    [11]

    Yamaguchi M, Takamoto T, Ohmori M 1997 J. Appl. Phys. 81 1116Google Scholar

    [12]

    Walters R J, Messenger S R, Summers G P, Romero M J, Al-Jassim M M, Araújo D, Garcia R 2001 J. Appl. Phys. 90 3558Google Scholar

    [13]

    Herre O, Wesch W, Wendler E, Gaiduk P, Komarov F 1998 Phys. Rev. B-Condens. Matter Mater. Phys. 58 4832Google Scholar

    [14]

    Gasparotto A, Carnera A, Frigeri C, Priolo F, Fraboni B, Camporese A, Rossetto G 1999 J. Appl. Phys. 85 753Google Scholar

    [15]

    Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M 2008 Phys. Rev. B - Condens. Matter Mater. Phys. 78 054111Google Scholar

    [16]

    Schnohr C S, Kluth P, Giulian R, Llewellyn D J, Byrne A P, Cookson D J, Ridgway M C 2010 Phys. Rev. B-Condens. Matter Mater. Phys. 81 1Google Scholar

    [17]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [18]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [19]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [20]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [21]

    Garcia A R, Mendoza E, Cano-Ott D, Nolte R, Martinez T, Algora A, Tain J L, Banerjee K, Bhattacharya C 2017 Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 868 73Google Scholar

    [22]

    李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹 2013 物理学报 62 058502Google Scholar

    Li X J, Liu M C, Sun Z L, Lan M J, Xiao L Y, He S Y 2013 Acta Pyhs. Sin. 62 058502Google Scholar

    [23]

    Mendenhall M H, Weller R A 2005 Nucl. Instruments Methods Phys. Res. B. 227 420Google Scholar

    [24]

    Weller R A, Mendenhall M H, Fleetwod D M 2004 Trans. Nucl. Sci. 51 3669Google Scholar

    [25]

    Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [26]

    Summers G P, Burke E A, Xapsos M A 1995 Radiat. Meas. 24 1Google Scholar

    [27]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [28]

    Robinson M T, Torrens L M 1974 Phys. Rev. B 8 15Google Scholar

    [29]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [30]

    Akkerman A, Barak J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 260 529Google Scholar

    [31]

    Jun I, Kim W, Evans R 2009 IEEE Trans. Nucl. Sci. 56 3229Google Scholar

    [32]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Tech. 34 529

    [33]

    Dale C G, Chen L, McNulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 197Google Scholar

    [34]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. B 268 1818Google Scholar

    [35]

    Xapsos M A, Burke E A, Badavi F F, Townsend L W, Wilson J W, Jun I 2004 IEEE Trans. Nucl. Sci. 51 3250Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [5] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [6] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [15] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 赵有文, 苗杉杉, 董志远, 吕小红, 邓爱红, 杨 俊, 王 博. 磷化铟中铁原子替位与填隙的热致转变及其对材料性质的影响. 物理学报, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [19] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [20] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
计量
  • 文章访问数:  5001
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-04-22
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回