-
电子器件中的半导体材料经过中子辐照后产生大量位移损伤, 进而影响器件性能, 氮化镓(GaN)材料是第三代宽禁带半导体, GaN基电子器件在国防、空间和航天等辐射服役环境中具有重要应用. 本文利用蒙特卡罗软件Geant4模拟了中子在GaN材料中的输运过程, 对在大气中子、压水堆、高温气冷堆和高通量同位素堆外围辐照区四种中子辐照环境下GaN中的初级反冲原子能谱及加权初级反冲原子能谱进行了分析. 研究发现: 在四种辐照环境下GaN中初级反冲原子能谱中, 均在0.58 MeV附近处出现不常见的“尖峰”, 经分析该峰为核反应产生的H原子峰, 由于低能中子
$ ({\rm{n}},{\rm{p}})$ 反应截面较大, 该峰的强弱和低能中子占总能谱的比例有关; 通过对比四种中子辐照环境下GaN中初级反冲原子能谱分布可知, 大气中子能谱辐照产生的初级反冲原子能量更低、分布范围更广, 裂变堆能谱下较高能量的初级反冲原子的比例较大, 大气中子和高通量同位素堆辐照环境下的初级反冲原子能谱与加权初级反冲原子谱形状更相似, 结合核反应产物对电学性能的影响, 高通量同位素堆外围辐照区更适合用于模拟GaN在大气中子环境下的辐照实验. 该结果对GaN基电子器件在辐射环境下长期服役评估研究和GaN材料的反应堆模拟中子辐照环境实验研究具有参考价值.Gallium nitride (GaN), one of the third-generation wide-bandgap semiconductors, offers significant application for advanced electronic devices utilized in neutron irradiation environments, like the defense, space, and aerospace, etc. In these applications, neutron irradiation-induced defects affect the properties of GaN and eventually degrade the performance of devices. In this work, neutron transport process in GaN is simulated by using the Monte Carlo-based code, Geant4 toolkit under four different irradiation conditions, e.g. high flux isotope reactor, high temperature gas-cooled reactor, pressurized water reactor, and atmospheric neutron irradiation. The energy spectra of primary knock-on atoms (PKA) in GaN and the corresponding weighted spectra under those irradiation conditions are analyzed. It is found that there is one unusual “peak” at around 0.58 MeV in the Primary recoil spectrum, regardless of the irradiation conditions. This peak is attributed to the neutron reaction of hydrogen nucleus, i.e., (n, p). Because of the remarkable (n,p) reaction cross-section of low-energy neutron, the intensity of this peak is related to the ratio of low-energy neutron to the total neutron spectrum. By comparing these PKA energy spectra in GaN, we can see that the PKA energy spectrum created under atmospheric neutron irradiation is similar to that in the high flux isotopic reactor. Specifically, the energy distribution of PKA is wide, and the magnitude of energy is lower than those under fission neutron irradiation conditions. In combination with the effects of nuclear reaction products on electrical properties, the high flux isotopic reactor is more suitable for simulating the irradiation of GaN in an atmospheric neutron energy spectrum environment. These above results can provide not only some insights into the evaluation of the degradation of GaN-based electronic devices under neutron irradiation, but also dataset for the study of radiation damage effect of GaN in simulated neutron environment.-
Keywords:
- geant4 /
- gallium nitride /
- primary recoils spectrum /
- neutron irradiation effect
[1] 贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 物理学报 10 107102Google Scholar
Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar
[2] 赵德刚, 周梅, 左淑华 2007 物理学报 56 5513Google Scholar
Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar
[3] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 物理学报 66 247302Google Scholar
Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar
[4] 孙殿照 2000 物理 30 413
Sun D Z 2000 Physics 30 413
[5] Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129
[6] Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780
[7] Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421
[8] Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533
[9] 张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)
Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[10] 吕玲2014 博士学位论文 (西安 西安电子科技大学)
Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)
[11] Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141
[12] Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906
[13] 王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505
Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505
[14] 曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar
Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar
[15] 路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529
Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529
[16] Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250
[17] 申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar
Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar
[18] Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859
[19] 何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar
He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar
[20] 郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar
Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar
[21] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar
Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar
[22] Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577
[23] Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751
[24] Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008
[25] Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667
[26] Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224
[27] 杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页
Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)
[28] Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97
[29] Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425
-
表 1 不同能谱下初级反冲原子占比
Table 1. Primary recoils proportion of different spectrum.
能谱 初级反冲原子比例/% Ga N C B H He other 大气中子 52.34 45.08 1.25 0.032 1.26 0.034 0.004 压水堆 54.26 43.39 0.92 0.25 0.92 0.25 0.01 高温气冷堆 54.87 43.62 0.52 0.23 0.52 0.23 0.01 同位素堆 48.27 44.94 3.28 0.11 3.28 0.11 0.01 -
[1] 贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 物理学报 10 107102Google Scholar
Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar
[2] 赵德刚, 周梅, 左淑华 2007 物理学报 56 5513Google Scholar
Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar
[3] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 物理学报 66 247302Google Scholar
Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar
[4] 孙殿照 2000 物理 30 413
Sun D Z 2000 Physics 30 413
[5] Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129
[6] Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780
[7] Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421
[8] Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533
[9] 张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)
Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[10] 吕玲2014 博士学位论文 (西安 西安电子科技大学)
Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)
[11] Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141
[12] Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906
[13] 王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505
Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505
[14] 曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar
Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar
[15] 路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529
Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529
[16] Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250
[17] 申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar
Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar
[18] Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859
[19] 何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar
He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar
[20] 郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar
Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar
[21] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar
Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar
[22] Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577
[23] Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751
[24] Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008
[25] Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667
[26] Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224
[27] 杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页
Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)
[28] Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97
[29] Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425
计量
- 文章访问数: 9083
- PDF下载量: 263
- 被引次数: 0