搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓相图预测及其高压熔化特性研究

雷振帅 孙小伟 刘子江 宋婷 田俊红

引用本文:
Citation:

氮化镓相图预测及其高压熔化特性研究

雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红

Phase diagram prediction of GaN and its high pressure melting characteristics

Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong
PDF
导出引用
  • 采用经典分子动力学模拟,结合第一性原理计算及晶格动力学方法对氮化镓(GaN)纤锌矿结构与岩盐结构在0—80GPa压力范围内的相图进行了预测。第一性原理计算与分子动力学模拟得到的零温下GaN纤锌矿到岩盐结构的相变压力分别为44.3 GPa和45.9 GPa,与已有的实验结果吻合(Sadovyi B et al.2020Phys.Rev.B 102 235109);通过外推纤锌矿结构GaN的熔化曲线得到其零压下的熔化温度为2295 K,当压力增加到33.3 GPa时,纤锌矿结构熔化曲线与岩盐结构熔化曲线相交,两种结构的熔化温度均随压力的增加而上升;GaN还可能存在超离子相,纤锌矿结构在压力大于2.0 GPa且温度高于2550 K时发生超离子相转变,岩盐结构在压力温度大于33.1 GPa和4182 K后发生超离子相转变,二者的相转变温度均会随着压力的增加而升高;GaN纤锌矿和岩盐结构的相界线并非为一直线,在高温下相界线斜率为正,随着温度的降低逐渐变为一条具有负斜率的曲线。
    The III-V compound semiconductor GaN has become an excellent semiconductor material for the development of high-frequency and high-power electronic devices because of its excellent characteristics, including large band width, high thermal conductivity and fast electron saturation rate, and has received extensive attention from experts and scholars in recent years. However, the decomposition temperature of GaN is lower than the melting temperature, some of its fundamental properties, such as melting temperature and high temperature phase transition pressure, are still ambiguous, and the investigation of fundamental properties dominates the whole process of this material from development to mature applications. In the present work, the classical molecular dynamics simulations combined with the first-principles calculations and lattice dynamics methods are adopted to predict the phase diagrams of GaN with wurtzite and rocksalt structures in the pressure range of 0-80 GPa. The phase transition pressures of 44.3 GPa and 45.9 GPa obtained from the first-principles calculations and molecular dynamics simulations from wurtzite to rocksalt structure in GaN at zero temperature are in agreement with the available experimental results (Sadovyi B et al. 2020 Phys. Rev. B 102 235109). The melting temperature at 0 GPa is 2295 K by extrapolating the GaN melting curve of the wurtzite structure. With the pressure increases to 33.3 GPa, the melting curve of wurtzite structure in GaN intersects with the melting curve of rocksalt structure, and the melting temperature of both structures increases with the increase of pressure. It is found that GaN may have a superionic phase and the superionic phase transition occurs in the wurtzite structure at pressures greater than 2.0 GPa and temperatures above 2550 K, whereas the rocksalt structure undergoes a superionic phase transition at pressures and temperatures more than 33.1 GPa and 4182 K, the phase transition temperatures of both increase with increasing pressure. The slope of the phase boundary line of GaN is positive at high temperatures and gradually changes to a curve with negative slope as the temperature decreases.
  • [1]

    Abdul Amir H A A, Fakhri M A, Abdulkhaleq Alwahib A 2021Mater. Today:Proc.42 2815

    [2]

    Van Vechten J A 1973Phys. Rev. B 7 1479

    [3]

    Zhou Y, Wang S F, Wang R, Jiang N 2013Physica B431 115

    [4]

    Sadovyi B, Wierzbowska M, Stelmakh S, Boccato S, Gierlotka S, Irifune T, Porowski S, Grzegory I 2020Phys. Rev. B 102235109

    [5]

    Utsumi W, Saitoh H, Kaneko H, Watanuki T, Aoki K, Shimomura O 2003Nat. Mater.2 735

    [6]

    Harafuji K, Tsuchiya T, Kawamura K 2004J. Appl. Phys. 96 2501

    [7]

    Karpiński J, Jun J, Porowski S 1984J. Cryst. Growth66 1

    [8]

    Xia H, Xia Q, Ruoff A L 1993Phys. Rev. B 47 12925

    [9]

    Novikov S V, Zainal N, Akimov A V, Staddon C R, Kent A J, Foxon C T 2010J. Vac. Sci. Technol. B28 C3B1

    [10]

    Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K 1994Phys. Rev. B 49 14

    [11]

    Saoud F S, Plenet J C, Louail L, Maouche D 2011Comput. Theor. Chem.964 65

    [12]

    Sokol A G, Palyanov Y N, Surovtsev N V 2007Diam. Relat. Mater. 16 431

    [13]

    Saitoh H, Utsumi W, Kaneko H, Aoki K 2007J. Cryst. Growth 300 26

    [14]

    Porowski S, Sadovyi B, Gierlotka S, Rzoska S J, Grzegory I, Petrusha I, Turkevich V, Stratiichuk D 2015J. Phys. Chem. Solids 85 138

    [15]

    Nord J, Albe K, Erhart P, Nordlund K 2003J. Phys.:Condens. Matter 15 5649

    [16]

    Alder B J, Wainwright T E 1957J. Chem. Phys. 27 1208

    [17]

    Kioseoglou J, Polatoglou H M, Lymperakis L, Nouet G, Komninou P 2003Comp. Mater. Sci. 27 43

    [18]

    Béré A, Serra A 2006Philos. Mag. 86 2159

    [19]

    Do E C, Shin Y H, Lee B J 2009J. Phys.:Condens. Matter21 325801

    [20]

    Zapol P, Pandey R, Gale J D 1997J. Phys.:Condens. Matter 9 9517

    [21]

    Zhang S, Chen N X 2005Chem. Phys.309 309

    [22]

    Born M, Mayer J E 1932Z. Physik 75 1

    [23]

    Fischer T H, Almlof J 1992J. Phys. Chem. 96 9768

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008Phys. Rev. Lett. 100 136406

    [25]

    Vanderbilt D 1990Phys. Rev. B41 7892

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005Z. Kristallogr.220 567

    [27]

    Gale J D, Rohl A L 2003Mol. Simulat.29 291

    [28]

    Pandey R, Jaffe J E, Harrison N M 1994J. Phys. Chem. Solids 55 1357

    [29]

    Kirchner V, Heinke H, Hommel D, Domagala J Z, Leszczynski M 2000Appl. Phys. Lett. 77 1434

    [30]

    Adachi K, Ogi H, Nagakubo A, Nakamura N, Hirao M, Imade M, Yoshimura M, Mori Y 2016J. Appl. Phys. 119245111

    [31]

    Polian A, Grimsditch M, Grzegory I 1996J. Appl. Phys.79 3343

    [32]

    Plimpton S 1995J. Comput. Phys.117 1

    [33]

    Zou Y C, Xiang S K, Dai C D 2020Comp. Mater. Sci.171109156

    [34]

    Hazarika M P, Chakraborty S N 2019Chem. Phys. Lett.730 521

    [35]

    Liu C M, Xu C, Cheng Y, Chen X R, Cai L C 2015J. Appl. Phys. 118235901

    [36]

    Wang S C, Zhang G M, Liu H F, Song H F 2013J. Chem. Phys. 138 134101

    [37]

    Cazorla C, Errandonea D 2013J. Phys. Chem. C 117 11292

    [38]

    Porowski S, Sadovyi B, Karbovnyk I, Gierlotka S, Rzoska S J, Petrusha I, Stratiichuk D, Turkevich V, Grzegory I 2019J. Cryst. Growth 505 5

    [39]

    Saitta A M, Decremps F 2004Phys. Rev. B 70 035214

    [40]

    Perlin P, Jauberthie-Carillon C, Itie J P, San Miguel A, Grzegory I I, Polian A 1992Phys. Rev. B45 83

    [41]

    Christensen N E, Gorczyca I I 1994Phys. Rev. B50 4397

    [42]

    Muñoz A, Kunc K 1994Comp. Mater. Sci. 2 400

  • [1] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [2] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, doi: 10.7498/aps.69.20200064
    [3] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.227101
    [4] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, doi: 10.7498/aps.64.107101
    [5] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, doi: 10.7498/aps.64.107801
    [6] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, doi: 10.7498/aps.61.086802
    [7] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, doi: 10.7498/aps.61.200207
    [8] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, doi: 10.7498/aps.61.093602
    [9] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.130510
    [10] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, doi: 10.7498/aps.60.098107
    [11] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.046104
    [12] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, doi: 10.7498/aps.58.7189
    [13] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度. 物理学报, doi: 10.7498/aps.57.61
    [14] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, doi: 10.7498/aps.56.376
    [15] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, doi: 10.7498/aps.55.2470
    [16] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, doi: 10.7498/aps.55.1424
    [17] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, doi: 10.7498/aps.55.4020
    [18] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, doi: 10.7498/aps.54.307
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4313
    [20] 王 进, 赵志刚, 刘 楣, 邢定钰. 磁通格子的有序-无序相变和反向熔化. 物理学报, doi: 10.7498/aps.52.3162
计量
  • 文章访问数:  110
  • PDF下载量:  0
  • 被引次数: 0
出版历程

氮化镓相图预测及其高压熔化特性研究

  • 兰州交通大学数理学院,兰州 730070

摘要: 采用经典分子动力学模拟,结合第一性原理计算及晶格动力学方法对氮化镓(GaN)纤锌矿结构与岩盐结构在0—80GPa压力范围内的相图进行了预测。第一性原理计算与分子动力学模拟得到的零温下GaN纤锌矿到岩盐结构的相变压力分别为44.3 GPa和45.9 GPa,与已有的实验结果吻合(Sadovyi B et al.2020Phys.Rev.B 102 235109);通过外推纤锌矿结构GaN的熔化曲线得到其零压下的熔化温度为2295 K,当压力增加到33.3 GPa时,纤锌矿结构熔化曲线与岩盐结构熔化曲线相交,两种结构的熔化温度均随压力的增加而上升;GaN还可能存在超离子相,纤锌矿结构在压力大于2.0 GPa且温度高于2550 K时发生超离子相转变,岩盐结构在压力温度大于33.1 GPa和4182 K后发生超离子相转变,二者的相转变温度均会随着压力的增加而升高;GaN纤锌矿和岩盐结构的相界线并非为一直线,在高温下相界线斜率为正,随着温度的降低逐渐变为一条具有负斜率的曲线。

English Abstract

目录

    /

    返回文章
    返回