-
多主元合金概念的提出颠覆了传统物理冶金的理念,极大地拓展了材料设计空间。合金相图从热力学角度揭示成分、热力学与结构之间的关系,对指导材料优化具有重要意义。传统实验方法测定相图费时耗力,且面临着测量条件、成分控制、高温高压等因素限制,系统评估相图和热力学性质困难。在此工作中,我们以典型等原子比镍钴铬合金为原型材料,采用元动力学、动态概率增强采样和扩展系综模拟相结合的方法,克服原子尺度模拟的时间尺度限制,系统绘制了镍钴铬在高温、高压条件下的温度-压力相图,并计算了不同热力学条件下该材料体心立方晶体与液体相变的自由能面。基于自由能路径,量化了晶化和熔化相变过程中,激活能、激活体积、激活熵与温度、压力的关系,从而揭示了压力和温度分别通过影响激活体积和激活熵,进而影响熔化和晶化动力学的物理机制。该研究为理解多主元合金的热力学与相变动力学提供了理论支持,探索了其在极端条件下结构稳定性。Understanding the phase stability and transformation kinetics of multi-principal element alloys (MPEAs) under extreme conditions is critical for optimizing their performance in extreme conditions such as high temperature and high pressure environment. This study investigates the high pressure-temperature (p-T) phase diagram and solid-liquid transition mechanisms of an equiatomic NiCoCr alloy based on embedded atom method (EAM) potential, through advanced molecular dynamics (MD) simulations combined with enhanced sampling techniques. To overcome the timescale limitations of the conventional MD in capturing phase transitions as rare events, we employed a hybrid approach integrating well-tempered metadynamics (WTMetaD) and the on-the-fly probability-enhanced sampling with expanded ensembles. Collective variables such as enthalpy per atom SH, and two-body entropy SS were used to explore the polymorphic states of the NiCoCr alloy. The crystallinity senv, potential energy U, volume V were utilized to drive phase transitions, sampled configurations across 1550–1750 K and 0–10 GPa using multithermal-multibaric-multiumbrella simulations.
-
Keywords:
- multi-principal elemental alloys /
- enhanced sampling /
- free energy /
- phase diagram /
- phase transition
-
[1] Peng J, Chen B, Wang Z, Guo J, Wu B, Hao S, Zhang Q, Gu L, Zhou Q, Liu Z, Hong S, You S, Fu A, Shi Z, Xie H, Cao D, Lin C J, Fu G, Zheng L S, Jiang Y, Zheng N 2020Nature 586 390
[2] Du J, Jiang S, Cao P, Xu C, Wu Y, Chen H, Fu E, Lu Z 2023Nat. Mater. 22 442
[3] Bai X, Xie H, Zhang X, Zhao D, Rong X, Jin S, Liu E, Zhao N, He C 2024Nat. Mater. 23 747
[4] George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435
[5] Ma E, Wu X 2019Nat. Commun. 10 5623
[6] George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515
[7] Yeh J ‐W., Chen S ‐K., Lin S ‐J., Gan J ‐Y., Chin T ‐S., Shun T ‐T., Tsau C ‐H., Chang S ‐Y. 2004Adv. Eng. Mater. 6 299
[8] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024Nat. Rev. Chem. 8 471
[9] Wang M, Ma Z L, Xu Z Q, Cheng X W 2021Scr. Mater. 191 131
[10] Kumar N A P K, Li C, Leonard K J, Bei H, Zinkle S J 2016Acta Mater. 113 230
[11] Zhao S, He L xin, Fan X xia, Liu C hai, Long J ping, Wang L, Chang H, Wang J, Zhang W 2019SURF COAT TECH 375 215
[12] Wu Z, Bei H, Pharr G M, George E P 2014Acta Mater. 81 428
[13] Gludovatz B, Hohenwarter A, Thurston K V S, Bei H, Wu Z, George E P, Ritchie R O 2016Nat. Commun 7 10602
[14] Ding J, Yu Q, Asta M, Ritchie R O 2018Proc. Natl. Acad. Sci. U.S.A. 115 8919
[15] Smith T M, Kantzos C A, Zarkevich N A, Harder B J, Heczko M, Gradl P R, Thompson A C, Mills M J, Gabb T P, Lawson J W 2023Nature 617 513
[16] Panagiotopoulos A Z, Quirke N, Stapleton M, Tildesley D J 1988Mol. Phys. 63 527
[17] Frenkel D, Ladd A J C 1984J. Chem. Phys 81 3188
[18] Grochola G 2004J. Chem. Phys 120 2122
[19] Zhang L, Wang H, Car R, E W 2021Phys. Rev. Lett. 126 236001
[20] Kruglov I A, Yanilkin A, Oganov A R, Korotaev P 2019Phys. Rev. B 100 174104
[21] Chen T, Yuan F, Liu J, Geng H, Zhang L, Wang H, Chen M 2023Phys. Rev. Mater. 7 053603
[22] Pártay L B, Bartók A P, Csányi G 2010J. Phys. Chem. B 114 10502
[23] Dorrell J, Pártay L B 2020J. Phys. Chem. B 124 6015
[24] Marchant G A, Caro M A, Karasulu B, Pártay L B 2023npj Comput. Mater. 9 131
[25] Unglert N, Carrete J, Pártay L B, Madsen G K H 2023Phys. Rev. Mater. 7 123804
[26] Laio A, Parrinello M 2002Proc. Natl. Acad. Sci. U.S.A. 99 12562
[27] Barducci A, Bussi G, Parrinello M 2008Phys. Rev. Lett. 100 020603
[28] Valsson O, Parrinello M 2014Phys. Rev. Lett. 113 090601
[29] Dama J F, Rotskoff G, Parrinello M, Voth G A 2014J. Chem. Theory Comput. 10 3626
[30] Piaggi P M, Parrinello M 2019Phys. Rev. Lett. 122 050601
[31] Piaggi P M, Parrinello M 2019J. Chem. Phys 150 244119
[32] Piaggi P M, Valsson O, Parrinello M 2017Phys. Rev. Lett. 119 015701
[33] Invernizzi M, Valsson O, Parrinello M 2017Proc. Natl. Acad. Sci. U.S.A. 114 3370
[34] Piaggi P M, Parrinello M 2018Proc. Natl. Acad. Sci. U.S.A. 115 10251
[35] Oganov A R, Pickard C J, Zhu Q, Needs R J 2019Nat. Rev. Mater. 4 331
[36] Niu H, Bonati L, Piaggi P M, Parrinello M 2020Nat. Commun. 11 2654
[37] Invernizzi M, Piaggi P M, Parrinello M 2020Phys. Rev. X 10 041034
[38] Tribello G A, Bonomi M, Branduardi D, Camilloni C, Bussi G 2014Comput. Phys. Commun. 185 604
[39] Li Q J, Sheng H, Ma E 2019Nat. Commun. 10 3563
[40] Dai S C, Yang Y, Wang Y J 2024Phys. Rev. Mater. 8 033607
[41] Cao F H, Wang Y J, Dai L H 2020Acta Mater 194 283
[42] Bussi G, Donadio D, Parrinello M 2007J. Chem. Phys 126 014101
[43] Parrinello M, Rahman A 1981J. Appl. Phys. 52 7182
[44] Flyvbjerg H, Petersen H G 1989J. Chem. Phys 91 461
[45] Rein Ten Wolde P, Ruiz-Montero M J, Frenkel D 1996J. Chem. Phys 104 9932
[46] Du J P, Yu P, Shinzato S, Meng F S, Sato Y, Li Y, Fan Y, Ogata S 2022Acta Mater. 240 118314
[47] Oganov A R, Glass C W 2006J. Chem. Phys 124 244704
[48] Gusev V V, Adamson D, Deligkas A, Antypov D, Collins C M, Krysta P, Potapov I, Darling G R, Dyer M S, Spirakis P, Rosseinsky M J 2023Nature 619 68
计量
- 文章访问数: 61
- PDF下载量: 0
- 被引次数: 0