搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数修改对铁电薄膜相变性质的影响

卢兆信

引用本文:
Citation:

参数修改对铁电薄膜相变性质的影响

卢兆信

Effects of parameter modifications on phase transition properties of ferroelectric thin films

Lu Zhao-Xin
PDF
导出引用
  • 在关联有效场理论的框架内, 利用微分算子技术, 详细地计算了基于横场伊辛模型描述的对称铁电薄膜系统的相变性质. 根据薄膜各层自旋平均值构成的一系列耦合方程, 推导出可以用来计算任意层的具有不同表面层的薄膜相图的解析通式方程, 讨论了参数修改对薄膜相互作用参数从FPD (铁电相占主导地位的相图)到PPD (顺电相占主导地位的相图)过渡值和参数空间中各相变区域的影响. 在与平均场近似进行比较的结果显示, 关联有效场理论所得到的铁电薄膜的铁电性在某种程度上比平均场近似下的结果减弱.
    Within the framework of effective-field theory with correlations, phase transition properties of ferroelectric thin films with different symmetrical surfaces described by the spin-1/2 transverse field Ising model are studied systematically by the differential operator technique. According to the coupling equations with the layer polarization average, the analytical general equations for phase diagrams of multiple-surface ferroelectric thin films with different surface layers have been derived. Then, effects of various parameter modifications on the crossover values from the FPD (ferroelectric-dominant phase diagram) to the PPD (paraelectric-dominant phase diagram) and phase transition regions in the parameter space are discussed in detail. In comparison with the mean-field approximation, the results indicate that the effective-field theory with correlations maybe reduce the ferroelectricity of the ferroelectric thin films more exaggeratedly than the mean-field approximation to some extent.
    • 基金项目: 国家自然科学基金(批准号: 11247208和11205079)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247208, 11205079).
    [1]

    Scott J F 2007 Science 315 954

    [2]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267

    [3]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [4]

    Zhong W L, Wang Y G, Zhang P L, Qu B D 1994 Phys. Rev. B 50 698

    [5]

    Lu T Q, Cao W W 2002 Phys. Rev. B 66 24102

    [6]

    Lin S, Lu T Q, Cao W W 2006 Phys. Stat. Sol. (b) 243 2952

    [7]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [8]

    Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 物理学报 59 6620]

    [9]

    L Y G, Liang X L, Gong Y Q, Zheng X J, Liu Z Z 2010 Acta Phys. Sin. 59 8167 (in Chinese) [吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮 2010 物理学报 59 8167]

    [10]

    Wang C L, Zhong W L, Zhang P L 1992 J. Phys.: Condens. Matter 4 4743

    [11]

    Wang C L, Smith S R P, Tilley D R 1994 J. Phys.: Condens. Matter 6 9633

    [12]

    Sy H K 1993 J. Phys.: Condens. Matter 5 1213

    [13]

    Wang X G, Pan S H, Yang G Z 1999 J. Phys.: Condens. Matter 11 6581

    [14]

    Tao Y M, Jiang Q, Cao H X 2005 Acta Phys. Sin. 54 0274 (in Chinese) [陶永梅, 蒋青, 曹海霞 2005 物理学报 54 0274]

    [15]

    Sun P N, Lu T Q, Chen H, Cao W W 2008 Chin. Phys. Lett. 25 3422

    [16]

    Chen H, Lu T Q, Cui L, Cao W W 2008 Physica A 387 1963

    [17]

    Zhou J, Lu T Q, Xie W G, Cao W W 2009 Chin. Phys. B 18 3054

    [18]

    Cui L, Lu T Q, Sun P N, Xue H J 2010 Chin. Phys. B 19 077701

    [19]

    Cui L, Xu Q, Han Z Y, Xu X 2012 Chin. Phys. Lett. 29 037701

    [20]

    Teng B H, Sy H K 2004 Physica B 348 485

    [21]

    Lu Z X, Teng B H, Lu X H, Zhang X J, Wang C D 2009 Solid State Commun. 149 1176

    [22]

    Lu Z X 2013 Phys. Scr. 87 025002

    [23]

    Lu Z X 2012 Physica A (submitted)

    [24]

    Wei G Z, Liu J, Miao H L, Du A 2007 Phys. Rev. B 76 054402

    [25]

    Teng B H, Sy H K 2004 Phys. Rev. B 70 104115

    [26]

    Lu Z X, Teng B H, Yang X, Rong Y H, Zhang H W 2010 Chin. Phys. B 19 127701

    [27]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [28]

    Kaneyoshi T 2003 Physica A 319 355

    [29]

    Jiang W, Lo V C 2008 Physica A 387 6778

    [30]

    Arhchoui H, El Amraoui Y, Mezzane D, Luk'yanchuk I 2009 Eur. Phys. J. Appl. Phys. 48 10503

    [31]

    Lu Z X, Teng B H, Rong Y H, Lu X H, Yang X 2010 Phys. Scr. 81 035004

  • [1]

    Scott J F 2007 Science 315 954

    [2]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267

    [3]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [4]

    Zhong W L, Wang Y G, Zhang P L, Qu B D 1994 Phys. Rev. B 50 698

    [5]

    Lu T Q, Cao W W 2002 Phys. Rev. B 66 24102

    [6]

    Lin S, Lu T Q, Cao W W 2006 Phys. Stat. Sol. (b) 243 2952

    [7]

    Sun P N, Cui L, Lu T Q 2009 Chin. Phys. B 18 1658

    [8]

    Zhou Z D, Zhang C Z, Zhang Y 2010 Acta Phys. Sin. 59 6620 (in Chinese) [周志东, 张春祖, 张颖 2010 物理学报 59 6620]

    [9]

    L Y G, Liang X L, Gong Y Q, Zheng X J, Liu Z Z 2010 Acta Phys. Sin. 59 8167 (in Chinese) [吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮 2010 物理学报 59 8167]

    [10]

    Wang C L, Zhong W L, Zhang P L 1992 J. Phys.: Condens. Matter 4 4743

    [11]

    Wang C L, Smith S R P, Tilley D R 1994 J. Phys.: Condens. Matter 6 9633

    [12]

    Sy H K 1993 J. Phys.: Condens. Matter 5 1213

    [13]

    Wang X G, Pan S H, Yang G Z 1999 J. Phys.: Condens. Matter 11 6581

    [14]

    Tao Y M, Jiang Q, Cao H X 2005 Acta Phys. Sin. 54 0274 (in Chinese) [陶永梅, 蒋青, 曹海霞 2005 物理学报 54 0274]

    [15]

    Sun P N, Lu T Q, Chen H, Cao W W 2008 Chin. Phys. Lett. 25 3422

    [16]

    Chen H, Lu T Q, Cui L, Cao W W 2008 Physica A 387 1963

    [17]

    Zhou J, Lu T Q, Xie W G, Cao W W 2009 Chin. Phys. B 18 3054

    [18]

    Cui L, Lu T Q, Sun P N, Xue H J 2010 Chin. Phys. B 19 077701

    [19]

    Cui L, Xu Q, Han Z Y, Xu X 2012 Chin. Phys. Lett. 29 037701

    [20]

    Teng B H, Sy H K 2004 Physica B 348 485

    [21]

    Lu Z X, Teng B H, Lu X H, Zhang X J, Wang C D 2009 Solid State Commun. 149 1176

    [22]

    Lu Z X 2013 Phys. Scr. 87 025002

    [23]

    Lu Z X 2012 Physica A (submitted)

    [24]

    Wei G Z, Liu J, Miao H L, Du A 2007 Phys. Rev. B 76 054402

    [25]

    Teng B H, Sy H K 2004 Phys. Rev. B 70 104115

    [26]

    Lu Z X, Teng B H, Yang X, Rong Y H, Zhang H W 2010 Chin. Phys. B 19 127701

    [27]

    Kaneyoshi T 1993 Acta Phys. Pol. A 83 703

    [28]

    Kaneyoshi T 2003 Physica A 319 355

    [29]

    Jiang W, Lo V C 2008 Physica A 387 6778

    [30]

    Arhchoui H, El Amraoui Y, Mezzane D, Luk'yanchuk I 2009 Eur. Phys. J. Appl. Phys. 48 10503

    [31]

    Lu Z X, Teng B H, Rong Y H, Lu X H, Yang X 2010 Phys. Scr. 81 035004

  • [1] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [2] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能. 物理学报, 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [3] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [4] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [5] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制. 物理学报, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [6] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [7] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [8] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [9] 李启朗, 孙晓燕, 汪秉宏, 刘慕仁. 低速十字路口交通流模型相图. 物理学报, 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [10] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究. 物理学报, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [11] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [12] 许 玲, 晏世雷. 横向随机晶场Ising模型的相图和磁化行为研究. 物理学报, 2007, 56(3): 1691-1696. doi: 10.7498/aps.56.1691
    [13] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁. 物理学报, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [14] 金 灿, 朱 骏, 毛翔宇, 何军辉, 陈小兵. Mo掺杂SrBi4Ti4O15陶瓷的铁电介电性能. 物理学报, 2006, 55(7): 3716-3720. doi: 10.7498/aps.55.3716
    [15] 羌 锋, 朱 骏, 毛翔宇, 陈小兵. Dy掺杂对Sr2Bi4Ti5O18铁电陶瓷性能的影响. 物理学报, 2005, 54(11): 5422-5427. doi: 10.7498/aps.54.5422
    [16] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [17] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [18] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响. 物理学报, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [19] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响. 物理学报, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [20] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. (Bi, La)4Ti3O12-Sr(Bi, La)4Ti4O15共生结构铁电材料性能研究. 物理学报, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
计量
  • 文章访问数:  3459
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-20
  • 修回日期:  2013-02-01
  • 刊出日期:  2013-06-05

参数修改对铁电薄膜相变性质的影响

  • 1. 临沂大学机械工程学院, 临沂 276005
    基金项目: 国家自然科学基金(批准号: 11247208和11205079)资助的课题.

摘要: 在关联有效场理论的框架内, 利用微分算子技术, 详细地计算了基于横场伊辛模型描述的对称铁电薄膜系统的相变性质. 根据薄膜各层自旋平均值构成的一系列耦合方程, 推导出可以用来计算任意层的具有不同表面层的薄膜相图的解析通式方程, 讨论了参数修改对薄膜相互作用参数从FPD (铁电相占主导地位的相图)到PPD (顺电相占主导地位的相图)过渡值和参数空间中各相变区域的影响. 在与平均场近似进行比较的结果显示, 关联有效场理论所得到的铁电薄膜的铁电性在某种程度上比平均场近似下的结果减弱.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回