搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习与第一性原理计算的高居里温度Janus预测

刘兆圣 张桥 宁勇祺 符秀交 邹代峰 王俊年 赵宇清

引用本文:
Citation:

基于机器学习与第一性原理计算的高居里温度Janus预测

刘兆圣, 张桥, 宁勇祺, 符秀交, 邹代峰, 王俊年, 赵宇清

Prediction of High Curie Temperature Janus Materials Based on Machine Learning and First-Principles Calculations

LIU Zhaosheng, ZHANG Qiao, NING Yongqi, FU Xiujiao, ZOU Daifeng, WANG Junnian, ZHAO Yuqing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维Janus磁性体系因空间反演对称性破缺,易产生较大的DMI作用项(Dzyaloshinskii Moriya interaction),为探索磁拓扑结构及发展新一代赛道级磁存储器件提供了理想的平台。在该研究领域中,寻找具有高居里温度的体系至关重要,这直接关系到材料在实际高温环境下的磁性能稳定性与应用潜力。本研究基于已有文献报道与开源数据库,构建了包含16880种ABC型二维材料的数据集。以材料的化学计量比、元素固有属性及电子结构特征为描述符,分别采用随机森林、梯度提升决策树、极端梯度提升和极端随机树四种机器学习模型,对二维材料的居里温度展开预测训练,并通过十折交叉验证评估模型的学习性能。研究结果表明,极端梯度提升模型对居里温度的预测精度最高且具备最优的泛化能力。基于最优模型,对4024种尚未探索的二维Janus结构材料进行了居里温度预测,最终筛选出54种同时具备热稳定性、高磁矩、高居里温度的二维Janus材料。为验证预测结果的可靠性,研究进一步结合第一性原理计算与海森堡模型,对随机选取的4种候选Janus体系进行了理论验证。本研究为加速发掘兼具稳定性与高居里温度的二维Janus磁性材料提供了新的技术途径,对推动二维磁性材料在信息存储等领域的应用具有重要意义。
    Magnetic skyrmions, characterized by their topological properties, serve as core components for developing next-generation non-volatile memory devices that demand high density, high speed, and low power consumption. Their formation arises from the Dzyaloshinskii-Moriya interaction (DMI), enabled by noncentrosymmetric structures. Two-dimensional Janus magnetic materials, which inherently break spatial inversion symmetry, readily generate strong DMI, providing an ideal platform for skyrmion generation and novel racetrack memory applications. Within this field, identifying systems with a high Curie temperature (TC) is crucial, as it directly governs magnetic property stability and application potential under high-temperature conditions. This study integrated literature and open-source databases to construct a dataset of 16,880 ABC-type two-dimensional materials. Utilizing stoichiometric ratios, intrinsic elemental properties, and electronic structure features as descriptors, four machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Extra Trees (ET)—were employed for TC prediction. Model performance was evaluated via ten-fold cross-validation, revealing that the XGBoost model exhibited superior prediction accuracy and generalization capability. Leveraging this model, TC was predicted for 4,024 unexplored two-dimensional Janus materials. This screening identified 54 promising candidates possessing thermal stability, high magnetic moment, and a TC exceeding 300 K. To verify reliability, four candidate systems (EuFeO, GdKTi, DyFeTb, ErFeGd) were randomly selected for theoretical validation using first-principles calculations combined with the Heisenberg model. For systems exhibiting strong correlation effects (containing d-orbital electrons), the Hubbard U parameter was incorporated to describe on-site Coulomb repulsion. Exchange coupling constants were derived using the VASP software package. Subsequently, TC values were calculated via classical Monte Carlo simulations performed using the MCSOLVER program. Results demonstrate that the mean absolute error (MAE) of the predicted TC agrees well with the model calculations for EuFeO and GdKTi, while larger deviations were observed for DyFeTb and ErFeGd. Nevertheless, the calculated TC values for all four candidates surpass room temperature. This work establishes a new computational framework for the effcient screening of high-performance two-dimensional Janus magnetic materials, contributing to the advancement of magnetic storage technologies.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012

    [3]

    Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036

    [4]

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101

    [5]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104

    [6]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903

    [7]

    Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903

    [8]

    Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414

    [9]

    Lu X, Fei R, Yang L 2019 PHYSICAL REVIEW B 100

    [10]

    Jiang Z, Wang P, Jiang X, Zhao J 2018 NANOSCALE HORIZONS 3 335

    [11]

    Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S 2017 SCIENCE ADVANCES 3

    [12]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398

    [13]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859

    [14]

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801

    [15]

    Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507

    [16]

    Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839

    [17]

    Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813

    [18]

    Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 61 e202206403

    [19]

    Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418

    [20]

    Li C Q, An Y K 2022 Phys. Rev. B 106 115417

    [21]

    Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910

    [22]

    Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388

    [23]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460

    [24]

    Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709

    [25]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405

    [26]

    Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405

    [27]

    Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06LT01

    [28]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658

    [29]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233

    [30]

    Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428

    [31]

    Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388

    [32]

    Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468

    [33]

    Xin C, Yin Y, Song B, Fan Z, Song Y, Pan F 2023 Chip 2 100071

    [34]

    Jung S G, Jung G, Cole J M 2024 JOURNAL OF CHEMICAL INFORMATION AND MODELING 64 6388

    [35]

    Qiao Z, Wei T, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 ACTA PHYSICA SINICA 73

    [36]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60

    [37]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [38]

    Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207

    [39]

    Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26

    [40]

    Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314

    [41]

    Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543

  • [1] 王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超. 一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法. 物理学报, doi: 10.7498/aps.74.20250982
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [3] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [4] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体. 物理学报, doi: 10.7498/aps.73.20240246
    [5] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [6] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, doi: 10.7498/aps.72.20231058
    [7] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, doi: 10.7498/aps.72.20231313
    [8] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, doi: 10.7498/aps.72.20230382
    [9] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [10] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, doi: 10.7498/aps.71.20220601
    [11] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [12] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [13] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [14] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, doi: 10.7498/aps.70.20210223
    [15] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [16] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [17] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [18] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, doi: 10.7498/aps.61.236301
    [19] 吴文霞, 郭永权, 李安华, 李 卫. Nd2Fe14B的价电子结构分析和磁性计算. 物理学报, doi: 10.7498/aps.57.2486
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  58
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-24

/

返回文章
返回