搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体

刘冰心 李宗良

引用本文:
Citation:

CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体

刘冰心, 李宗良

CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity

Liu Bing-Xin, Li Zong-Liang
PDF
HTML
导出引用
  • 半金属铁磁体在费米能级附近具有特殊的能带结构, 电子极化率可高达100%, 在自旋电子学领域备受关注. 但是大部分铁磁半金属材料的居里温度远低于室温, 这大大限制了二维铁磁半金属材料的实际应用. 因此寻找具有高居里温度的半金属铁磁体是一项具有挑战性的工作. 本文基于密度泛函理论框架下的第一性原理方法, 研究了过渡金属氧化物CrO2单层的晶体结构、电子特性、基态磁性和铁磁相变. 形成能计算、声子谱计算和分子动力学模拟表明CrO2具有动力学稳定性和热稳定性, 弹性常数计算表明CrO2具有力学稳定性. 基于GGA + U和SCAN方法的自旋极化计算表明CrO2单层的磁基态是铁磁态. 采用GGA + U方法计算了CrO2的电子态密度和能带结构, CrO2被确认为一种宽带隙的二维铁磁半金属. 运用蒙特卡罗模拟方法求解Heisenberg模型, 得到CrO2单层是一种居里温度超过400 K的二维本征半金属铁磁体. CrO2单层的高居里温度在二维铁磁材料中并不多见, 在半金属材料中更为稀少, 这将使它成为制备自旋电子器件和研究自旋量子效应的理想材料.
    Owing to the complete spin-polarization of electronic states near Fermi energy, half-metallic ferromagnets, especially two-dimensional half-metallic ferromagnets, have garnered significant attention in the field of spintronics. However, the practical applications of these materials are greatly hindered by their low Curie temperatures. Therefore, the exploration of high Curie temperature half-metallic ferromagnets poses a necessary and challenging task. In this study, we predict a two-dimensional transition metal oxide, CrO2 monolayer, and employ first-principles calculations to investigate the crystal structure, electronic properties, magnetic ground state, and ferromagnetic phase transition. The calculations of phonon spectrum, elastic constant, and molecular dynamics simulations indicate that CrO2 monolayer is dynamically, mechanically, and thermally stable. The convex hull diagram of Cr-O systems shows that the hull energy of the predicted CrO2 layer is only 0.18 eV, further confirming the structural stability and large possibility for experimental fabrication. More importantly, the electronic and magnetic properties of CrO2 monolayer demonstrate that it is a two-dimensional ferromagnetic half-metal with wide band gap. Five d suborbitals are divided into Eg and T2g orbitals because of the crystal field of Cr atom in the center of O tetrahedron, and the spin-polarizations of Eg orbitals make a major contribution to the moment around Cr atom. The ferromagnetic coupling along Cr-O-Cr chain is dominated by the superexchange interaction bridged by O 2p orbitals, similar to the typical Mn-O-Mn superexchange model. The magnetic behavior of the Cr spin lattice in a CrO2 monolayer is described by a two-dimensional Heisenberg model, in which the exchange coupling anisotropy is ignored and the single ion anisotropy is the main consideration. By solving the Heisenberg model through using the Monte Carlo simulation method, the Curie temperature is determined to be over 400 K. The high Curie temperature ferromagnetism is rare in two-dimensional ferromagnetic materials and even rarer in semi-metallic materials, which makes it an ideal material for fabricating spintronic devices and studying spin quantum effects.
      通信作者: 李宗良, lizongliang@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974217) 资助的课题.
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974217).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [3]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [4]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [5]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [6]

    Balan A P, Radhakrishnan S, Woellner C F, Sinha S K, Deng L, de los Reyes C, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, van Aken P A, Varghese O K, Tiwary C S, Iyer A M M R, Ajayan P M 2018 Nat. Nanotechnol. 13 602Google Scholar

    [7]

    Balan A P, Radhakrishnan S, Kumar R, Neupane R, Sinha S K, Deng L Z, de los Reyes C A, Apte A, Rao B M, Paulose M, Vajtai R, Chu C W, Costin G, Martí A A, Varghese O K, Singh A K, Tiwary C S, Anantharaman M R, Ajayan P M 2018 Chem. Mater. 30 5923Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z, Du J F 2022 Chin. Phys. Lett. 39 047601Google Scholar

    [10]

    Feng P J, Zhang X H, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 ACS Omega 7 43316Google Scholar

    [11]

    Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar

    [12]

    Feng P J, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 J. Phys. Chem. C 126 10139Google Scholar

    [13]

    Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar

    [14]

    Zhang S, Feng P J, Liu D P, Wu H F, Gao M, Xu T S, Xie Z Y, Yan X W 2022 Phys. Rev. B 106 235402Google Scholar

    [15]

    Wang Y, Guo Y, Wang Z K, Fu L, Zhang Y, Xu Y J, Yuan S J, Pan H Z, Du Y W, Wang J L, Tang N J 2021 ACS Nano 15 12069Google Scholar

    [16]

    Wang Y, Xu W, Fu L, Zhang Y, Wu Y Z, Wu L T, Yang D Y, Peng S Z, Ning J, Zhang C, Cui X, Zhong W, Liu Y, Xiong Q H, Han G Q, Hao Y 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [17]

    Wang Y, Xu W, Yang D Y, Zhang Y, Xu Y J, Cheng Z X, Mi X K, Wu Y Z, Liu Y, Hao Y, Han G Q 2023 ACS Nano 17 24320Google Scholar

    [18]

    Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar

    [19]

    Huang P, Zhang P, Xu S G, Wang H D, Zhang X W, Zhang H 2020 Nanoscale 12 2309Google Scholar

    [20]

    Lin Z C, Peng Y X, Wu B C, Wang C S, Luo Z C, Yang J B 2022 Chin. Phys. B 31 087506Google Scholar

    [21]

    Cava R J 2000 J. Am. Ceram. Soc. 83 5Google Scholar

    [22]

    Wilson R M 2019 Phys. Today 72 19Google Scholar

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477Google Scholar

    [24]

    Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 13169Google Scholar

    [25]

    Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 235119Google Scholar

    [26]

    Yang J, Jiang Y L, Li L J, Muhire E, Gao M Z 2016 Nanoscale 8 8170Google Scholar

    [27]

    Zhang F, Zhu J J, Zhang D L, Schwingenschlögl U, Alshareef H N 2017 Nano Lett. 17 1302Google Scholar

    [28]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [29]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [30]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211Google Scholar

    [31]

    Dedkov Yu S, Rüdiger U, Güntherodt G 2002 Phys. Rev. B 65 064417Google Scholar

    [32]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [33]

    Xie W H, Liu B G, Pettifor D G 2003 Phys. Rev. B 68 134407Google Scholar

    [34]

    程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀 2011 物理学报 60 096301Google Scholar

    Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F, Nie Z X 2011 Acta Phys. Sin. 60 096301Google Scholar

    [35]

    Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677Google Scholar

    [36]

    Alijani V, Winterlik J, Fecher G H, Naghavi S S, Felser C 2011 Phys. Rev. B 83 184428Google Scholar

    [37]

    许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录 2019 物理学报 68 157501Google Scholar

    Xu J L, Jia L Y, Jin X Q, Hao X N, Ma L, Hou D L 2019 Acta Phys. Sin. 68 157501Google Scholar

    [38]

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102 (in Chinses) [赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械 2012 物理学报 61 213102]Google Scholar

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102 (in Chinses)Google Scholar

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402Google Scholar

    [44]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [47]

    Born M, Huang K, Lax M 1955 Am. J. Phys. 23 474Google Scholar

    [48]

    Wooster W A, Wooster N 1931 Nature 127 782Google Scholar

    [49]

    Dufek V, Petrů F, Brožek V 1967 Monatsh. Chem. 98 2424Google Scholar

    [50]

    Zhang Q, Xu M K, Shen Z R, Wei Q 2017 J. Mater. Sci. Mater. Electron. 28 12056Google Scholar

    [51]

    Zhou S M, Zhu G Y, Wang Y Q, Lou S Y, Hao Y M 2011 Chem. Eng. J. 174 432Google Scholar

    [52]

    Bärnighausen H, Brauer G, Schultz N 1965 Z. Anorg. Allg. Chem. 338 250Google Scholar

    [53]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [54]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [55]

    Graf T, Felser C, Parkin S S P 2011 Prog. Solid. State Ch. 39 1Google Scholar

    [56]

    Zhang Y H, Wang B, Guo Y, Li Q, Wang J L 2021 Comput. Mater. Sci. 197 110638Google Scholar

    [57]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517Google Scholar

    [58]

    Xu C, Feng J, Xiang H, Bellaiche L 2018 NPJ Comput. Mater. 4 57Google Scholar

    [59]

    Šabani D, Bacaksiz C, Milošević M V 2020 Phys. Rev. B 102 014457Google Scholar

    [60]

    张杰 2023 博士学位论文 (北京: 中国科学院物理研究所)

    Zhang J 2023 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences

  • 图 1  CrO2单层的原子结构图 (a)俯视图; (b)侧视图; (c)立体图, 黑色虚线框表示原胞; (d) CrO2单层的声子谱; (e) CrO2单层在1000 K下总势能随时间的演化曲线, 时间范围为5 ps, 插图为经过5 ps分子动力学模拟后CrO2最终构型的俯视图和侧视图

    Fig. 1.  Atomic structure of CrO2 monolayer: (a) Top view; (b) side view; (c) oblique view, the unit cell is marked by the black dashed line square; (d) phonon spectra of CrO2 monolayer; (e) total energy evolution with time at 1000 K. The illustration shows a top and side view of the final configuration of CrO2 after 5 ps molecular dynamics simulation.

    图 2  (a) Cr-O系统的凸包图, 五角星表示本工作中的CrO2单层结构; (b) Cr原子的d轨道电子数对Hubbard U的响应关系, 红线和蓝线表示自洽计算和非自洽计算的结果

    Fig. 2.  (a) Convex hull of formation energy of the Cr-O systems, the star is the CrO2 monolayer in this work; (b) the response of d electron number to the small U perturbation, red and blue symbols correspond to the results from the self-consistent and non-self-consistent calculations.

    图 3  CrO2投影到Cr原子3d轨道和O原子2p轨道上的分轨道态密度, 费米能级用垂直虚线表示, 费米能级设置为0 eV

    Fig. 3.  Projected density of states on the Cr 3d and O 2p suborbitals, the Fermi energy represented by vertical dashed lines, the Fermi energy is set to zero.

    图 4  不同方法计算CrO2的能带结构, 费米能级设置为0 eV (a) GGA+U; (b) SCAN

    Fig. 4.  Band structure of CrO2 monolayer by different calculations, and Fermi energy is zero: (a) GGA + U; (b) SCAN.

    图 5  (a) CrO2单层结构的俯视图, J1J2分别表示最近邻和次近邻Cr原子间的交换耦合系数; (b) FM序; (c) AFM-I序; (d) AFM-II序, 不同磁序下的原胞用黑色虚线框表示, 红色箭头和蓝色箭头表示相反的磁矩指向

    Fig. 5.  (a) Nearest and next-nearest neighbor exchange couplings, J1 and J2, represented by the double arrows; (b) ferromagnetic order; (c) antiferromagnetic order I (AFM-I); (d) antiferromagnetic order II (AFM-II), the magnetic unit cells are marked with the dashed line, red and blue arrows indicate the opposite directions of Cr magnetic moments.

    图 6  CrO2单层的磁化强度M和磁化率$\chi $随温度的变化关系, 其中所用的磁耦合参数和磁各向异性能的计算采用了不同的方法 (a) GGA+U; (b) SCAN

    Fig. 6.  Variation of average moment and susceptibility with temperature, the exchange couplings and anisotropic energy are derived from different calculations: (a) GGA+U; (b) SCAN.

    表 1  CrO2在FM, AFM-Ⅰ和AFM-Ⅱ磁序的能量, 单个Cr原子的局域磁矩, 交换耦合系数J1J2, 单离子磁各向异性能A和居里温度TC. FM能量设置为零

    Table 1.  Energies in the FM, AFM-I, and AFM-II orders, the nearest and next-nearest neighbor exchange couplings J1 and J2, the anisotropic energy, the Curie temperature. The FM energy is set to zero.

    Method EFM/meV EAFM-Ⅰ/meV EAFM-Ⅱ/meV Moment/μB J1/(meV·S–2) J2/(meV·S–2) A/(meV·S–2) TC/K
    GGA + U 0 120.23 167.96 2.4 –41.99 –9.06 –0.195 461
    SCAN 0 109.71 191.43 2.2 –47.86 –3.50 –0.103 422
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [3]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [4]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [5]

    Gong C, Zhang X 2019 Science 363 eaav4450Google Scholar

    [6]

    Balan A P, Radhakrishnan S, Woellner C F, Sinha S K, Deng L, de los Reyes C, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, van Aken P A, Varghese O K, Tiwary C S, Iyer A M M R, Ajayan P M 2018 Nat. Nanotechnol. 13 602Google Scholar

    [7]

    Balan A P, Radhakrishnan S, Kumar R, Neupane R, Sinha S K, Deng L Z, de los Reyes C A, Apte A, Rao B M, Paulose M, Vajtai R, Chu C W, Costin G, Martí A A, Varghese O K, Singh A K, Tiwary C S, Anantharaman M R, Ajayan P M 2018 Chem. Mater. 30 5923Google Scholar

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [9]

    Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z, Du J F 2022 Chin. Phys. Lett. 39 047601Google Scholar

    [10]

    Feng P J, Zhang X H, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 ACS Omega 7 43316Google Scholar

    [11]

    Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104Google Scholar

    [12]

    Feng P J, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 J. Phys. Chem. C 126 10139Google Scholar

    [13]

    Liu D P, Feng P J, Gao M, Yan X W 2021 Phys. Rev. B 103 155411Google Scholar

    [14]

    Zhang S, Feng P J, Liu D P, Wu H F, Gao M, Xu T S, Xie Z Y, Yan X W 2022 Phys. Rev. B 106 235402Google Scholar

    [15]

    Wang Y, Guo Y, Wang Z K, Fu L, Zhang Y, Xu Y J, Yuan S J, Pan H Z, Du Y W, Wang J L, Tang N J 2021 ACS Nano 15 12069Google Scholar

    [16]

    Wang Y, Xu W, Fu L, Zhang Y, Wu Y Z, Wu L T, Yang D Y, Peng S Z, Ning J, Zhang C, Cui X, Zhong W, Liu Y, Xiong Q H, Han G Q, Hao Y 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [17]

    Wang Y, Xu W, Yang D Y, Zhang Y, Xu Y J, Cheng Z X, Mi X K, Wu Y Z, Liu Y, Hao Y, Han G Q 2023 ACS Nano 17 24320Google Scholar

    [18]

    Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar

    [19]

    Huang P, Zhang P, Xu S G, Wang H D, Zhang X W, Zhang H 2020 Nanoscale 12 2309Google Scholar

    [20]

    Lin Z C, Peng Y X, Wu B C, Wang C S, Luo Z C, Yang J B 2022 Chin. Phys. B 31 087506Google Scholar

    [21]

    Cava R J 2000 J. Am. Ceram. Soc. 83 5Google Scholar

    [22]

    Wilson R M 2019 Phys. Today 72 19Google Scholar

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477Google Scholar

    [24]

    Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 13169Google Scholar

    [25]

    Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 235119Google Scholar

    [26]

    Yang J, Jiang Y L, Li L J, Muhire E, Gao M Z 2016 Nanoscale 8 8170Google Scholar

    [27]

    Zhang F, Zhu J J, Zhang D L, Schwingenschlögl U, Alshareef H N 2017 Nano Lett. 17 1302Google Scholar

    [28]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [29]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [30]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211Google Scholar

    [31]

    Dedkov Yu S, Rüdiger U, Güntherodt G 2002 Phys. Rev. B 65 064417Google Scholar

    [32]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [33]

    Xie W H, Liu B G, Pettifor D G 2003 Phys. Rev. B 68 134407Google Scholar

    [34]

    程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀 2011 物理学报 60 096301Google Scholar

    Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F, Nie Z X 2011 Acta Phys. Sin. 60 096301Google Scholar

    [35]

    Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677Google Scholar

    [36]

    Alijani V, Winterlik J, Fecher G H, Naghavi S S, Felser C 2011 Phys. Rev. B 83 184428Google Scholar

    [37]

    许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录 2019 物理学报 68 157501Google Scholar

    Xu J L, Jia L Y, Jin X Q, Hao X N, Ma L, Hou D L 2019 Acta Phys. Sin. 68 157501Google Scholar

    [38]

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102 (in Chinses) [赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械 2012 物理学报 61 213102]Google Scholar

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102 (in Chinses)Google Scholar

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402Google Scholar

    [44]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [46]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [47]

    Born M, Huang K, Lax M 1955 Am. J. Phys. 23 474Google Scholar

    [48]

    Wooster W A, Wooster N 1931 Nature 127 782Google Scholar

    [49]

    Dufek V, Petrů F, Brožek V 1967 Monatsh. Chem. 98 2424Google Scholar

    [50]

    Zhang Q, Xu M K, Shen Z R, Wei Q 2017 J. Mater. Sci. Mater. Electron. 28 12056Google Scholar

    [51]

    Zhou S M, Zhu G Y, Wang Y Q, Lou S Y, Hao Y M 2011 Chem. Eng. J. 174 432Google Scholar

    [52]

    Bärnighausen H, Brauer G, Schultz N 1965 Z. Anorg. Allg. Chem. 338 250Google Scholar

    [53]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [54]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [55]

    Graf T, Felser C, Parkin S S P 2011 Prog. Solid. State Ch. 39 1Google Scholar

    [56]

    Zhang Y H, Wang B, Guo Y, Li Q, Wang J L 2021 Comput. Mater. Sci. 197 110638Google Scholar

    [57]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517Google Scholar

    [58]

    Xu C, Feng J, Xiang H, Bellaiche L 2018 NPJ Comput. Mater. 4 57Google Scholar

    [59]

    Šabani D, Bacaksiz C, Milošević M V 2020 Phys. Rev. B 102 014457Google Scholar

    [60]

    张杰 2023 博士学位论文 (北京: 中国科学院物理研究所)

    Zhang J 2023 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [3] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展. 物理学报, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [4] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [5] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [7] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [8] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [9] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [10] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [11] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制. 物理学报, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [12] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [13] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [14] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [15] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [16] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [17] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [18] 徐绍言, 陆博翘, 郑亚茹, 孙 雁. 过渡金属Fe,Co,Ni居里点附近热电势的实验研究. 物理学报, 2006, 55(5): 2529-2533. doi: 10.7498/aps.55.2529
    [19] 郝延明, 赵 伟, 高 艳. Y2(Fe1-x-y,Coy,Crx)17化合 物的结构及居里温度. 物理学报, 2003, 52(10): 2612-2615. doi: 10.7498/aps.52.2612
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  2634
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-04
  • 修回日期:  2024-03-07
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-20

/

返回文章
返回