搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La(Fe, Si)13化合物的居里温度机制

王芳 汪金芝 冯唐福 孙仁兵 余盛

引用本文:
Citation:

La(Fe, Si)13化合物的居里温度机制

王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛

Curie temperature mechanism in La(Fe, Si)13 compound

Wang Fang, Wang Jin-Zhi, Feng Tang-Fu, Sun Ren-Bing, Yu Sheng
PDF
导出引用
  • NaZn13型La(Fe,Si)13化合物随Si含量增加,相变性质由一级过渡为二级,化合物晶胞体积收缩,饱和磁化强度降低,居里温度升高. 其居里温度与晶胞体积之间的关系不能用Bethe-Slater曲线给出合理的解释. 本文利用添加间隙原子碳调节La(Fe,Si)13 化合物晶胞体积和居里温度的方法,系统研究了该化合物居里温度与晶胞体积之间的关系. 结果发现二者之间的变化规律遵循Jaccarino-Walker模型,即仅有5%甚至更少的3d电子被认为是真正的巡游电子,其余的3d 电子仍是局域的. 以极化的巡游电子为媒介,局域电子之间产生类似于Ruderman-Kittel-Kasuya-Yosida 的长程相互作用,相互作用的符号和大小与距离呈周期性震荡. 随Si 含量的增加,La(Fe,Si)13化合物巡游电子数目增加,化合物的居里温度由晶胞体积和巡游电子的浓度共同决定.
    In NaZn13 type La(Fe,Si)13 compound, the phase transition nature varies from the first order to the second order, the cell volume contracts, the saturated magnetization decreases and the Curie temperature increases with increasing Si content. In this paper, the relation between the Curie temperature and the cell volume is investigated systematically by introducing the interstitial carbon atoms, which is an efficient method to control the cell volume and the Curie temperature. It is found that the relation between the Curie temperature and the cell volume is consistent with the Jaccarino-Walker model, in which only 5% or less 3d electrons are considered as the itinerant electrons and the others are regarded as the localized ones. With the polarized itinerant electrons used as a medium, the interaction between the 3d localized electrons is similar to Ruderman-Kittel-Kasuya-Yosida interaction, whose sign and magnitude oscillate periodically with distance. The number of the itinerant electrons of the La (Fe,Si)13 increases with the increase of Si content. The Curie temperature is dependent on both the cell volume and the number of itinerant electrons.
    • 基金项目: 国家自然科学基金(批准号:11204147,51371185)、浙江省自然科学基金(批准号:LY13A040002)、宁波市自然科学基金(批准号:2013A610130)和宁波工程学院校基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204147, 51371185), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A040002), the Ningbo Natural Science Foundation, China (Grant No. 2013A610130), and the Research Foundation from Ningbo University of Technology, China.
    [1]

    Wohlfarth E P 1980 Ferromagnetic Materials (Vol. 1) (North Holland: North Holland Publishing Company) p227

    [2]

    Sun H, Coey J M D, Otani Y, Hurley D P F 1990 J. Phys. Condens. Matter 2 6465

    [3]

    Qi Q N, Sun H, Skomski R, Coey J M D 1992 Phys. Rev. B 45 12278

    [4]

    Katter M, Wecker J, Schultz L, Grossinger R 1990 J. Magn. Magn. Mater. 92 L14

    [5]

    Jacobs T H, Buschow K H J, Zhou G F, Li X, de Boer F R 1992 J. Magn. Magn. Mater. 116 220

    [6]

    Sun H, Akayama M, Tatami K, Fujii H 1993 Physica B 183 33

    [7]

    Herbst J F 1991 Rev. Mod. Phys. 63 819

    [8]

    Sun H, Akayama M, Tatami K, Fujii H 1993 Physica B 183 33

    [9]

    Middleton D P, Buschow K H J 1994 J. Alloy. Compounds 206 L1

    [10]

    Moran S, Ederer C, Fahnle M 2003 Phys. Rev. B 67 012407

    [11]

    Brouha M, Buschow K H J 1973 J. Appl. Phys. 44 1813

    [12]

    Brouha M, Buschow K H J, Miedema A R 1974 IEEE Trans. Magn. MAG 10 182

    [13]

    Beth Stearns M 1971 Phys. Rev. B 4 4081

    [14]

    Beth Stearns M 1972 Phys. Rev. B 6 3326

    [15]

    Beth Stearns M 1973 Phys. Rev. B 8 4383

    [16]

    Beth Stearns M 1976 Phys. Rev. B 13 1183

    [17]

    Beth Stearns M 1978 J. Appl. Phys. 49 1555

    [18]

    Beth Stearns M 1978 Phys. Rev. B 17 2809

    [19]

    Jaakkola S, Parviainen S, Penttila 1983 J. Phys. F 13 491

    [20]

    Takahashi T, Shimizu M 1965 J. Phys. Soc. Japan 20 26

    [21]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [22]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 Chin. Phys. 13 393

    [23]

    Shen J, Li Y X, Wang F, Wang G J, Zhang S Y 2004 Chin. Phys. 13 1134

    [24]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 Chin. Phys. 13 1344

    [25]

    Valeanu M, Plugaru N, Burzo E 1994 Phys. Status Solidi B 184 K77

    [26]

    Plugaru N, Valeanu M 1994 IEEE Trans. Magn. MAG 30 663

    [27]

    Fujita A, Yako H, Kano M 2013 J. Appl. Phys. 113 17A924

  • [1]

    Wohlfarth E P 1980 Ferromagnetic Materials (Vol. 1) (North Holland: North Holland Publishing Company) p227

    [2]

    Sun H, Coey J M D, Otani Y, Hurley D P F 1990 J. Phys. Condens. Matter 2 6465

    [3]

    Qi Q N, Sun H, Skomski R, Coey J M D 1992 Phys. Rev. B 45 12278

    [4]

    Katter M, Wecker J, Schultz L, Grossinger R 1990 J. Magn. Magn. Mater. 92 L14

    [5]

    Jacobs T H, Buschow K H J, Zhou G F, Li X, de Boer F R 1992 J. Magn. Magn. Mater. 116 220

    [6]

    Sun H, Akayama M, Tatami K, Fujii H 1993 Physica B 183 33

    [7]

    Herbst J F 1991 Rev. Mod. Phys. 63 819

    [8]

    Sun H, Akayama M, Tatami K, Fujii H 1993 Physica B 183 33

    [9]

    Middleton D P, Buschow K H J 1994 J. Alloy. Compounds 206 L1

    [10]

    Moran S, Ederer C, Fahnle M 2003 Phys. Rev. B 67 012407

    [11]

    Brouha M, Buschow K H J 1973 J. Appl. Phys. 44 1813

    [12]

    Brouha M, Buschow K H J, Miedema A R 1974 IEEE Trans. Magn. MAG 10 182

    [13]

    Beth Stearns M 1971 Phys. Rev. B 4 4081

    [14]

    Beth Stearns M 1972 Phys. Rev. B 6 3326

    [15]

    Beth Stearns M 1973 Phys. Rev. B 8 4383

    [16]

    Beth Stearns M 1976 Phys. Rev. B 13 1183

    [17]

    Beth Stearns M 1978 J. Appl. Phys. 49 1555

    [18]

    Beth Stearns M 1978 Phys. Rev. B 17 2809

    [19]

    Jaakkola S, Parviainen S, Penttila 1983 J. Phys. F 13 491

    [20]

    Takahashi T, Shimizu M 1965 J. Phys. Soc. Japan 20 26

    [21]

    Hu F X, Shen B G, Sun J R, Zhang X X 2000 Chin. Phys. 9 550

    [22]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 Chin. Phys. 13 393

    [23]

    Shen J, Li Y X, Wang F, Wang G J, Zhang S Y 2004 Chin. Phys. 13 1134

    [24]

    Wang F, Chen Y F, Wang G J, Sun J R, Shen B G 2004 Chin. Phys. 13 1344

    [25]

    Valeanu M, Plugaru N, Burzo E 1994 Phys. Status Solidi B 184 K77

    [26]

    Plugaru N, Valeanu M 1994 IEEE Trans. Magn. MAG 30 663

    [27]

    Fujita A, Yako H, Kano M 2013 J. Appl. Phys. 113 17A924

  • [1] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [2] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [3] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [4] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [5] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [6] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [7] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [8] 郝延明, 严达利, 傅斌, 王立群, 郝小鹏, 王宝义. Tb2AlFe16-xMnx化合物的结构、磁性及正电子湮没谱研究. 物理学报, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [9] 郝延明, 王玲玲, 严达利, 安力群. 电弧炉制备的Sm2Fe17-xCrx化合物的结构与磁性. 物理学报, 2009, 58(10): 7222-7226. doi: 10.7498/aps.58.7222
    [10] 吴文霞, 郭永权, 李安华, 李 卫. Nd2Fe14B的价电子结构分析和磁性计算. 物理学报, 2008, 57(4): 2486-2492. doi: 10.7498/aps.57.2486
    [11] 张继业, 骆 军, 梁敬魁, 纪丽娜, 刘延辉, 李静波, 饶光辉. 赝二元固溶体TbGa1-xGex(0≤x≤0.4)的结构与磁性. 物理学报, 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [12] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [13] 徐绍言, 陆博翘, 郑亚茹, 孙 雁. 过渡金属Fe,Co,Ni居里点附近热电势的实验研究. 物理学报, 2006, 55(5): 2529-2533. doi: 10.7498/aps.55.2529
    [14] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [15] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [16] 刘喜斌, 沈保根. Mn5Ge2.7M0.3 (M=Ga,Al,Sn) 化合物的磁性和磁熵变. 物理学报, 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [17] 江 阔, 李合非, 马 文, 宫声凯. Mn的价态对La0.8Ba0.2MnO3电磁性能的影响. 物理学报, 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
    [18] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响. 物理学报, 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [19] 郝延明, 赵 伟, 高 艳. Y2(Fe1-x-y,Coy,Crx)17化合 物的结构及居里温度. 物理学报, 2003, 52(10): 2612-2615. doi: 10.7498/aps.52.2612
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  3591
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 修回日期:  2014-03-04
  • 刊出日期:  2014-06-05

La(Fe, Si)13化合物的居里温度机制

  • 1. 宁波工程学院, 宁波 315211
    基金项目: 国家自然科学基金(批准号:11204147,51371185)、浙江省自然科学基金(批准号:LY13A040002)、宁波市自然科学基金(批准号:2013A610130)和宁波工程学院校基金资助的课题.

摘要: NaZn13型La(Fe,Si)13化合物随Si含量增加,相变性质由一级过渡为二级,化合物晶胞体积收缩,饱和磁化强度降低,居里温度升高. 其居里温度与晶胞体积之间的关系不能用Bethe-Slater曲线给出合理的解释. 本文利用添加间隙原子碳调节La(Fe,Si)13 化合物晶胞体积和居里温度的方法,系统研究了该化合物居里温度与晶胞体积之间的关系. 结果发现二者之间的变化规律遵循Jaccarino-Walker模型,即仅有5%甚至更少的3d电子被认为是真正的巡游电子,其余的3d 电子仍是局域的. 以极化的巡游电子为媒介,局域电子之间产生类似于Ruderman-Kittel-Kasuya-Yosida 的长程相互作用,相互作用的符号和大小与距离呈周期性震荡. 随Si 含量的增加,La(Fe,Si)13化合物巡游电子数目增加,化合物的居里温度由晶胞体积和巡游电子的浓度共同决定.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回