搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In掺杂对磁性半导体Li1.05(Zn0.925, Mn0.075)As中铁磁序的调控

谢玲凤 董金瓯 赵雪芹 杨巧林 宁凡龙

引用本文:
Citation:

In掺杂对磁性半导体Li1.05(Zn0.925, Mn0.075)As中铁磁序的调控

谢玲凤, 董金瓯, 赵雪芹, 杨巧林, 宁凡龙

Manipulation of ferromagnetic ordering in magnetic semiconductor Li1.05(Zn0.925, Mn0.075)As by In doping

Xie Ling-Feng, Dong Jin-Ou, Zhao Xue-Qin, Yang Qiao-Lin, Ning Fan-Long
PDF
HTML
导出引用
  • 磁性半导体中磁矩受载流子调控形成有序态, 但其机制尚存在着争议. 本文利用高温固相反应法, 通过(Zn2+, In3+)替换, 即In3+占据Zn2+的晶格位置, 在p型块状磁性半导体Li1.05(Zn0.925, Mn0.075)As中引入n型载流子, 成功合成了一系列Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)新材料. 在保持Mn掺杂浓度为7.5%不变时, 仍可在所有In掺杂的样品中观察到铁磁转变. 随着In掺杂浓度的增大, 其居里温度被不断压制. 样品的电阻率随着In掺杂浓度的增大而逐渐增大. 实验结果表明, 随着In的掺杂, Li1.05(Zn0.925, Mn0.075)As中原有的p型载流子被部分抵消, 导致总载流子浓度降低, 反映了n型载流子对Li1.05(Zn0.925, Mn0.075)As中铁磁序的压制作用, 同时也验证了载流子对磁性半导体中铁磁序的重要影响.
    Magnetic semiconductors (MSs) that can manipulate both spin degree of freedom and charge degree of freedom have become an important research field in semiconductor spintronics. In recent years, a new series of bulk form MSs, which are iso-structure to the iron-based superconductors were reported. In these new materials, spins and carriers are separately introduced, and can be precisely manipulated. Li(Zn, Mn)As with TC ~50 K is the first bulk MS with spins and charges separated. The Li(Zn, Mn)As has p-type carriers, which is in contradiction with the theoretical calculation results by Mašek et al., who claimed that doping extra Li will induce n-type carriers. So, it is necessary to study the formation reason of hole carriers in Li(Zn, Mn)As and their effect on ferromagnetic ordering. In this work, a series of Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1) new materials are successfully synthesized by introducing n-type carriers into the p-type bulk MS Li1.05(Zn0.925, Mn0.075)As through (Zn2+, In3+) substitution. Magnetization measurements reveal that all the samples still maintain a ferromagnetic transition signal similar to MS Li1.05(Zn0.925, Mn0.075)As, and the Curie temperature TC is obviously suppressed with the increase of In-doping concentration. Clear hysteresis loops demonstrate the ferromagnetic ordering state. The resistivity increases gradually with the increase of In-doping concentration. Our results show that the (Zn2+, In3+) substitution successfully introduces n-type carriers into Li1.05(Zn0.925, Mn0.075)As, and the original p-type carriers in Li1.05(Zn0.925, Mn0.075)As, which are partial neutralized, resulting in the decrease of p-type carrier concentrations, which obviously suppresses the ferromagnetic ordering of Li(Zn, Mn)As. It reflects the important roles played by carriers in forming ferromagnetic ordering in MS materials. The fabrication of Li1.05(Zn0.925–y, Mn0.075, Iny)As material gives us a better understanding of the mechanism of ferromagnetic ordering in Li(Zn, Mn)As, and these results will be helpful in searching for more novel magnetic semiconductor materials.
      通信作者: 宁凡龙, ningfl@zju.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2022YFA1402701, 2022YFA1403202)、国家自然科学基金(批准号: 12074333)和浙江省重点研发计划(批准号: 2021C01002)资助的课题.
      Corresponding author: Ning Fan-Long, ningfl@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1402701, 2022YFA1403202), the National Natural Science Foundation of China (Grant No. 12074333), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002) .
    [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [3]

    Ohno H, Shen N A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363Google Scholar

    [4]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [5]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584Google Scholar

    [6]

    Ding C, Qin C, Man H, Imai T, Ning F 2013 Phys. Rev. B 88 041108Google Scholar

    [7]

    Gu Y, Guo S L, Ning F L 2019 J. Semicond. 40 081506Google Scholar

    [8]

    Guo S L, Ning F L 2018 Chin. Phys. B 27 097502Google Scholar

    [9]

    Dietl T, Bonanni A, Ohno H 2019 J. Semicond. 40 080301Google Scholar

    [10]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [11]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q, Wang X, Zhu J, Feng S, Chen L, Yu R, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A, Munsie T, Williams T, Luke G, Kakeshita T, Uchida S, Higemoto W, Ito T, Gu Bo, Maekawa S, Morris G, Uemura Y 2011 Nat. Commun. 2 422Google Scholar

    [13]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C, Ning F 2013 Phys. Rev. B 88 041102Google Scholar

    [14]

    Zhao K, Deng Z, Wang X, et al. 2013 Nat. Commun. 4 1442Google Scholar

    [15]

    Zhao K, Chen B, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [16]

    Wang X, Liu Q, Lv Y, Gao W, Yang L, Yu R, Li F, Jin C Q 2008 Solid State Commun. 148 538Google Scholar

    [17]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [18]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [19]

    Zhao X, Dong J, Fu L, Gu Y, Zhang R, Yang Q, Xie L, Tang Y, Ning F 2022 J. Semicond. 43 112501Google Scholar

    [20]

    Dong J, Zhao X, Fu L, Gu Y, Zhang R, Yang Q, Xie L, Ning F 2022 J. Semicond. 43 072501Google Scholar

    [21]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [22]

    Kuriyama K, Nakamura F 1987 Phys. Rev. B 36 4439Google Scholar

    [23]

    Kuriyama K, Kato T, Kawada K 1994 Phys. Rev. B 49 11452Google Scholar

    [24]

    Wei S, Zunger A 1986 Phys. Rev. Lett. 56 528Google Scholar

    [25]

    Mašek J, Kudrnovský J, Máca F, et al. 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [26]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [27]

    Ding C, Gong X, Man H, Zhi G, Guo S, Zhao Y, Wang H, Chen B, Ning F 2014 Europhys. Lett. 107 17004Google Scholar

  • 图 1  (a) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)的X射线衍射图; (b) Li1.05(Zn0.875, Mn0.075, In0.05)As的Rietveld 精修结果; (c) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)的晶格常数a

    Fig. 1.  (a) The X-ray diffraction patterns for Li1.05(Zn0.925, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1); (b) the Rietveld refinement of Li1.05(Zn0.87, Mn0.075, In0.05)As; (c) the lattice parameter of Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1).

    图 2  (a) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)在100 Oe外场下的场冷及零场冷磁化强度曲线, 插图为y = 0.05, 0.075, 0.1的样品在2—25 K的磁化强度曲线; (b) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)在温度为2 K下的等温磁化强度曲线, 插图为–200—200 Oe的局部放大图; (c) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)的磁化强度对温度的一阶导数与温度的关系 (dM/dT-T), 箭头标注为 Tdiff; (d) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)的1/(χ–χ0)线性拟合结果, 箭头标注为外斯温度θ

    Fig. 2.  (a) The temperature dependence magnetization for Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1) in zero-field cooling (ZFC) and field cooling (FC) conditions with an applied external field of 100 Oe, inset shows the temperature dependence magnetization for y = 0.05, 0.075, 0.1 samples from 2 K to 25 K; (b) the iso-thermal magnetization for Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1) at 2 K, inset shows the partial enlarged curves with temperature from –200 Oe to 200 Oe; (c) the dM/dT versus T curves for Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1), the arrow marked Tdiff; (d) the linear fitting results of 1/(χ–χ0) versus T for Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1), the arrow marked the weiss temperature θ.

    图 3  (a) Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)电阻率随温度变化的关系; (b) Li1.05(Zn0.825, Mn0.075, In0.1)As在室温附近的lnρ - 1000/T的实验数据和激发能拟合曲线

    Fig. 3.  (a) Temperature dependence of Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1) resistance; (b) experimental data and activation energy fitting curves of lnρ - 1000/T for Li1.05(Zn0.925–y, Mn0.075, Iny)As near room temperature.

    表 1  Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1)的外斯温度θTdiff、有效磁矩µeff、矫顽力HC

    Table 1.  The Weiss temperature θ, Tdiff, the effective moment µeff and the coercive field HC of Li1.05(Zn0.925–y, Mn0.075, Iny)As (y = 0, 0.05, 0.075, 0.1).

    yθ/KTdiff/Kµeff /(μB/Mn)HC/Oe
    028.4203.95
    0.0513.94.52.6150
    0.0755.34.53.635
    0.14.943.430
    下载: 导出CSV
  • [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [3]

    Ohno H, Shen N A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363Google Scholar

    [4]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [5]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584Google Scholar

    [6]

    Ding C, Qin C, Man H, Imai T, Ning F 2013 Phys. Rev. B 88 041108Google Scholar

    [7]

    Gu Y, Guo S L, Ning F L 2019 J. Semicond. 40 081506Google Scholar

    [8]

    Guo S L, Ning F L 2018 Chin. Phys. B 27 097502Google Scholar

    [9]

    Dietl T, Bonanni A, Ohno H 2019 J. Semicond. 40 080301Google Scholar

    [10]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [11]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [12]

    Deng Z, Jin C Q, Liu Q, Wang X, Zhu J, Feng S, Chen L, Yu R, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A, Munsie T, Williams T, Luke G, Kakeshita T, Uchida S, Higemoto W, Ito T, Gu Bo, Maekawa S, Morris G, Uemura Y 2011 Nat. Commun. 2 422Google Scholar

    [13]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C, Ning F 2013 Phys. Rev. B 88 041102Google Scholar

    [14]

    Zhao K, Deng Z, Wang X, et al. 2013 Nat. Commun. 4 1442Google Scholar

    [15]

    Zhao K, Chen B, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [16]

    Wang X, Liu Q, Lv Y, Gao W, Yang L, Yu R, Li F, Jin C Q 2008 Solid State Commun. 148 538Google Scholar

    [17]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [18]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar

    [19]

    Zhao X, Dong J, Fu L, Gu Y, Zhang R, Yang Q, Xie L, Tang Y, Ning F 2022 J. Semicond. 43 112501Google Scholar

    [20]

    Dong J, Zhao X, Fu L, Gu Y, Zhang R, Yang Q, Xie L, Ning F 2022 J. Semicond. 43 072501Google Scholar

    [21]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [22]

    Kuriyama K, Nakamura F 1987 Phys. Rev. B 36 4439Google Scholar

    [23]

    Kuriyama K, Kato T, Kawada K 1994 Phys. Rev. B 49 11452Google Scholar

    [24]

    Wei S, Zunger A 1986 Phys. Rev. Lett. 56 528Google Scholar

    [25]

    Mašek J, Kudrnovský J, Máca F, et al. 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [26]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

    [27]

    Ding C, Gong X, Man H, Zhi G, Guo S, Zhao Y, Wang H, Chen B, Ning F 2014 Europhys. Lett. 107 17004Google Scholar

  • [1] 崔娜玮, 高嘉忻, 董慧薷, 李传奇, 罗小兵, 肖进鹏. 磁性原子链中的拓扑超导相竞争. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241095
    [2] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体. 物理学报, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [3] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [4] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO. 物理学报, 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [5] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [6] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [7] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [8] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [9] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制. 物理学报, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [10] 卢兆信. 参数修改对铁电薄膜相变性质的影响. 物理学报, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [11] 邹文琴, 路忠林, 王申, 刘圆, 陆路, 郦莉, 张凤鸣, 都有为. Mn和N共掺ZnO稀磁半导体薄膜的研究. 物理学报, 2009, 58(8): 5763-5767. doi: 10.7498/aps.58.5763
    [12] 张继业, 骆 军, 梁敬魁, 纪丽娜, 刘延辉, 李静波, 饶光辉. 赝二元固溶体TbGa1-xGex(0≤x≤0.4)的结构与磁性. 物理学报, 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [13] 宋红强, 王 勇, 颜世申, 梅良模, 张 泽. 退火对高Co含量Ti1-xCoxO2磁性半导体的影响. 物理学报, 2008, 57(7): 4534-4538. doi: 10.7498/aps.57.4534
    [14] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运. 物理学报, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [15] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [16] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [17] 金 灿, 朱 骏, 毛翔宇, 何军辉, 陈小兵. Mo掺杂SrBi4Ti4O15陶瓷的铁电介电性能. 物理学报, 2006, 55(7): 3716-3720. doi: 10.7498/aps.55.3716
    [18] 江 阔, 李合非, 马 文, 宫声凯. Mn的价态对La0.8Ba0.2MnO3电磁性能的影响. 物理学报, 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
    [19] 刘喜斌, 沈保根. Mn5Ge2.7M0.3 (M=Ga,Al,Sn) 化合物的磁性和磁熵变. 物理学报, 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  1494
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-01-17
  • 上网日期:  2024-01-30
  • 刊出日期:  2024-04-20

/

返回文章
返回