搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO

张浩杰 张茹菲 傅立承 顾轶伦 智国翔 董金瓯 赵雪芹 宁凡龙

引用本文:
Citation:

一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO

张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙

(La1–xSrx)(Zn1–xMnx)SbO: A novel 1111-type diluted magnetic semiconductor

Zhang Hao-Jie, Zhang Ru-Fei, Fu Li-Cheng, Gu Yi-Lun, Zhi Guo-Xiang, Dong Jin-Ou, Zhao Xue-Qin, Ning Fan-Long
PDF
HTML
导出引用
  • 利用高温固相反应法, 成功合成了一种新型块状稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO(x = 0.025, 0.05, 0.075, 0.1). 通过(La3+, Sr2+)、(Zn2+, Mn2+)替换, 在半导体材料LaZnSbO中分别引入了载流子与局域磁矩. 在各掺杂浓度的样品中均可观察到铁磁有序相转变, 当掺杂浓度x = 0.1时, 其居里温度Tc达到了27.1 K, 2 K下测量获得的等温磁化曲线表明其矫顽力为5000 Oe. (La1–xSrx)(Zn1–xMnx)SbO与“1111”型铁基超导体母体LaFeAsO、“1111”型反铁磁体LaMnAsO具有相同的晶体结构, 且晶格参数差异很小, 为制备多功能异质结器件提供了可能的材料选择.
    Diluted magnetic semiconductor (DMS) that combines the properties of spin and charge degrees of freedom, which has potential applications in the field of spintronic devices. In the 1990s, due to the breakthrough of low-temperature molecular beam epitaxy technology, scientists successfully synthesized III-V DMS (Ga, Mn)As, and developed some spintronics devices accordingly. However, the maximum Curie temperature of (Ga, Mn)As is only 200 K, which is still below room temperature that is required for practical applications. Searching for diluted magnetic semiconductors with higher Curie temperature and the exploring of their magnetism is still one of the focuses at present. In recent years, developed from iron-based superconductors, a series of novel magnetic semiconductors have been reported. These new DMSs have the advantages of decoupled charge and spin doping, and each concentration can be precisely controlled. In this paper, novel bulk diluted magnetic semiconductors (La1–xSrx)(Zn1–xMnx)SbO (x = 0.025, 0.050,0.075, 0.10) are successfully synthesized, with the highest Tc ~ 27.1 K for the doping level of x = 0.10. We dope Sr2+ and Mn2+ into the parent semiconductor material LaZnSbO to introduce holes and moments, respectively. The ferromagnetic ordered phase transition can be observed in the samples with various doping concentrations. A relatively large coercive field is observed to be ~ 5000 Oe from the iso-thermal magnetization measurement at 2 K. The (La1–xSrx)(Zn1–xMnx)SbO has the same crystal structure as the “1111-type” iron-based superconductor LaFeAsO, and the lattice parameter difference is very small. It provides a possible material choice for preparing the multifunctional heterojunction devices.
      通信作者: 宁凡龙, ningfl@zju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0300402)、国家自然科学基金(批准号: 12074333)和浙江省重点研发计划(批准号: 2021C01002)资助的课题
      Corresponding author: Ning Fan-Long, ningfl@zju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0300402), the National Natural Science Foundation of China (Grant No. 12074333), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002)
    [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [3]

    Ohno H, Shen n A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363Google Scholar

    [4]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [5]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109Google Scholar

    Zhao J H, Deng J J, Zheng H Z, 2007 Progress in Physics 27 109Google Scholar

    [6]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584Google Scholar

    [7]

    Ding C, Guo S, Zhao Y, Man H, Fu L, Gu Y, Wang Z, Liu L, Frandsen B, Cheung S, Uemura Y, Goko T, Luetkens H, Morenzoni E, Zhao Y, Ning F 2015 J. Phys.: Condens. Matter 28 026003Google Scholar

    [8]

    Ding C, Gong X, Man H, Zhi G, Guo S, Zhao Y, Wang H, Chen B, Ning F 2014 Europhys. Lett. 107 17004Google Scholar

    [9]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C, Ning F 2013 Phys. Rev. B 88 041102Google Scholar

    [10]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, ChangQing J 2013 Sci. China: Phys., Mech. Astron. 56 2026Google Scholar

    [11]

    Guo S, Zhao Y, Gong X, Man H, Ding C, Zhi G, Fu L, Gu Y, Wang H, Chen B, Ning F 2016 Europhys. Lett. 114 57008Google Scholar

    [12]

    Zhao Y, Wang K, Guo S, Fu L, Gu Y, Zhi G, Xu L, Cui Q, Cheng J, Wang H, Chen B, Ning F 2018 Europhys. Lett. 120 47005Google Scholar

    [13]

    Yang X, Li Y, Shen C, Si B, Sun Y, Tao Q, Cao G, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [14]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu C, Hu F, Shen B, Frandsen B, Cheung S, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [15]

    Fu L, Gu Y, Guo S, Wang K, Zhang H, Zhi G, Liu H, Xu Y, Wang Y, Wang H, Ning F 2019 J. Magn. Magn. Mater. 483 95Google Scholar

    [16]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [17]

    Emery N, Wildman N E, Skakle E J, Mclaughlin A, Smith R, Fitch A 2011 Phys. Rev. B 83 094413Google Scholar

    [18]

    Zhang Q, Kumar C, Tian W, Kevin W, Goldman A, Vaknin D 2016 Phys. Rev. B 93 094413

    [19]

    Dietl T, Bonanni A, Ohno H 2019 J. Semicond. 40 080301Google Scholar

    [20]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [21]

    Deng Z, Jin C, Liu Q, Wang X, Zhu J, Feng S, Chen L, Yu R, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A, Munsie T, Williams T, Luke G, Kakeshita T, Uchida S, Higemoto W, Ito T, Gu Bo, Maekawa S, Morris G, Uemura Y 2011 Nat. Commun. 2 1Google Scholar

    [22]

    Zhao K, Deng Z, Wang X C, et al. 2013 Nat. Commun. 4 1Google Scholar

    [23]

    Gu Y, Zhang H, Zhang R, Fu L, Wang K, Zhi G, Guo S, Ning F 2020 Chin. Phys. B 29 057507Google Scholar

    [24]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [25]

    Gu B 2019 J. Semicond. 40 081504Google Scholar

    [26]

    Ding C, Qin C, Man H, Imai T, Ning F 2013 Phys. Rev. B 88 041108Google Scholar

    [27]

    Gu Y, Guo S, Ning F 2019 J. Semicond. 40 081506Google Scholar

    [28]

    Guo S, Ning F 2018 Chin. Phys. B 27 097502Google Scholar

    [29]

    Guo K, Man Z Y, Wang X J, Chen H H, Tang M B, Zhang Z J, Grin Y, Zhao J T 2011 Dalton Trans. 40 10007Google Scholar

    [30]

    Johnston D C 2010 Adv. Phys. 59 803Google Scholar

    [31]

    衣玮, 吴奇, 孙力玲 2017 物理学报 66 037402Google Scholar

    Yi W, Wu Q, Sun L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [32]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

  • 图 1  (a) (La1–xSrx)(Zn1–xMnx)SbO的X射线衍射图, 杂质ZnSb由(*)标注; (b) LaZnSbO的晶体结构; (c) (La0.95Sr0.05)(Zn0.95Mn0.05)SbO的Rietveld精修结果; (d) (La1–xSrx)(Zn1–xMnx)SbO的晶格常数

    Fig. 1.  (a) The X-ray diffraction patterns for (La1–xSrx)(Zn1–xMnx)SbO (x = 0.025, 0.05, 0.075, 0.1); Trace of impurities ZnSb (*) are marked; (b) the crystal structure of LaZnSbO; (c) the Rietveld refinement of (La0.95Sr0.05)(Zn0.95Mn0.05)SbO; (d) the lattice parameters of (La1–xSrx)(Zn1–xMnx)SbO.

    图 2  (a) (La1–xSrx)(Zn1–xMnx)SbO分别在100 Oe的场冷和零场冷测量条件下的直流磁化强度; (b) (La1–xSrx)(Zn1–xMnx)SbO拟合后的$ 1/({\rm{\chi }}-{\chi }_{0}) $结果, 箭头标注为外斯温度θ; (c) (La1–xSrx)(Zn1–xMnx)SbO磁化强度与温度之间的一阶导数关系(dM/dT), 箭头标注为样品的居里温度TC; (d)温度为2 K下的等温磁化强度曲线

    Fig. 2.  (a) The temperature dependence of DC magnetization for (La1–xSrx)(Zn1–xMnx)SbO measured under field-cooling (FC) and zero-field-cooling(ZFC) with external field of 100 Oe; (b) the plot of $ 1/({\rm{\chi }}-{\chi }_{0}) $ versus T for (La1–xSrx)(Zn1–xMnx)SbO, and the arrow marked the Weiss Temperature $ \theta $; (c)the derivative of moment versus temperature for (La1–xSrx)(Zn1–xMnx)SbO, and the arrow marked the Curie Temperature; (d)iso-thermal magnetization for (La1–xSrx)(Zn1–xMnx)SbO at 2 K.

    图 3  (La1–xSrx)(Zn1–xMnx)SbO电阻随温度变化的关系

    Fig. 3.  Temperature dependence of (La1–xSrx)(Zn1–xMnx)SbO resistance.

    表 1  “1111”型稀磁半导体、超导体、反铁磁体的相变温度

    Table 1.  The phase transition temperature of 1111-type dilute magnetic semiconductors, superconductors and antiferromagnets.

    类型结构化学式相变温度/K
    稀磁半导体(P4/nmm)(La, Ca)(Zn, Mn)AsO[7]30(居里温度)
    (La, Sr)(Zn, Mn)AsO[8]30
    (La, Ba)(Zn, Mn)AsO[9]40
    (La, Ca)(Zn, Mn)SbO[10]40
    La(Zn, Mn, Cu)AsO[11]8
    La(Zn, Mn, Cu)SbO[12]15
    (La, Sr)(Cu, Mn)SO[13]200
    (Ba, K)F(Zn, Mn)As[14]30
    SrF(Zn, Mn, Cu)Sb[15]40
    超导体(P4/nmm)LaFeAs(O, F)[16]26 (超导转变温度)
    反铁磁体(P4/nmm)LaMnAsO[17]317 (奈尔温度)
    LaMnSbO[18]255 K
    下载: 导出CSV

    表 2  居里温度Tc、外斯温度θ、有效磁矩Meff、矫顽力Hc

    Table 2.  The Curie temperature Tc, the Weiss temperature θ, the effective moment Meff and the coercive field Hc.

    掺杂浓度xTc / Kθ / KMeff / ($ {\mu }_{\rm{B}}/{\rm{Mn}} $)Hc / Oe
    0.02510.010.54.3216000
    0.05014.120.24.6817000
    0.07523.233.04.843500
    0.1027.137.34.265000
    下载: 导出CSV
  • [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [3]

    Ohno H, Shen n A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363Google Scholar

    [4]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [5]

    赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109Google Scholar

    Zhao J H, Deng J J, Zheng H Z, 2007 Progress in Physics 27 109Google Scholar

    [6]

    Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, von Molnár S 2011 Nano Lett. 11 2584Google Scholar

    [7]

    Ding C, Guo S, Zhao Y, Man H, Fu L, Gu Y, Wang Z, Liu L, Frandsen B, Cheung S, Uemura Y, Goko T, Luetkens H, Morenzoni E, Zhao Y, Ning F 2015 J. Phys.: Condens. Matter 28 026003Google Scholar

    [8]

    Ding C, Gong X, Man H, Zhi G, Guo S, Zhao Y, Wang H, Chen B, Ning F 2014 Europhys. Lett. 107 17004Google Scholar

    [9]

    Ding C, Man H, Qin C, Lu J, Sun Y, Wang Q, Yu B, Feng C, Goko T, Arguello C, Ning F 2013 Phys. Rev. B 88 041102Google Scholar

    [10]

    Han W, Zhao K, Wang X, Liu Q, Ning F, Deng Z, Liu Y, Zhu J, Ding C, Man H, ChangQing J 2013 Sci. China: Phys., Mech. Astron. 56 2026Google Scholar

    [11]

    Guo S, Zhao Y, Gong X, Man H, Ding C, Zhi G, Fu L, Gu Y, Wang H, Chen B, Ning F 2016 Europhys. Lett. 114 57008Google Scholar

    [12]

    Zhao Y, Wang K, Guo S, Fu L, Gu Y, Zhi G, Xu L, Cui Q, Cheng J, Wang H, Chen B, Ning F 2018 Europhys. Lett. 120 47005Google Scholar

    [13]

    Yang X, Li Y, Shen C, Si B, Sun Y, Tao Q, Cao G, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [14]

    Chen B, Deng Z, Li W, Gao M, Liu Q, Gu C, Hu F, Shen B, Frandsen B, Cheung S, Jin C 2016 Sci. Rep. 6 36578Google Scholar

    [15]

    Fu L, Gu Y, Guo S, Wang K, Zhang H, Zhi G, Liu H, Xu Y, Wang Y, Wang H, Ning F 2019 J. Magn. Magn. Mater. 483 95Google Scholar

    [16]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [17]

    Emery N, Wildman N E, Skakle E J, Mclaughlin A, Smith R, Fitch A 2011 Phys. Rev. B 83 094413Google Scholar

    [18]

    Zhang Q, Kumar C, Tian W, Kevin W, Goldman A, Vaknin D 2016 Phys. Rev. B 93 094413

    [19]

    Dietl T, Bonanni A, Ohno H 2019 J. Semicond. 40 080301Google Scholar

    [20]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [21]

    Deng Z, Jin C, Liu Q, Wang X, Zhu J, Feng S, Chen L, Yu R, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A, Munsie T, Williams T, Luke G, Kakeshita T, Uchida S, Higemoto W, Ito T, Gu Bo, Maekawa S, Morris G, Uemura Y 2011 Nat. Commun. 2 1Google Scholar

    [22]

    Zhao K, Deng Z, Wang X C, et al. 2013 Nat. Commun. 4 1Google Scholar

    [23]

    Gu Y, Zhang H, Zhang R, Fu L, Wang K, Zhi G, Guo S, Ning F 2020 Chin. Phys. B 29 057507Google Scholar

    [24]

    Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [25]

    Gu B 2019 J. Semicond. 40 081504Google Scholar

    [26]

    Ding C, Qin C, Man H, Imai T, Ning F 2013 Phys. Rev. B 88 041108Google Scholar

    [27]

    Gu Y, Guo S, Ning F 2019 J. Semicond. 40 081506Google Scholar

    [28]

    Guo S, Ning F 2018 Chin. Phys. B 27 097502Google Scholar

    [29]

    Guo K, Man Z Y, Wang X J, Chen H H, Tang M B, Zhang Z J, Grin Y, Zhao J T 2011 Dalton Trans. 40 10007Google Scholar

    [30]

    Johnston D C 2010 Adv. Phys. 59 803Google Scholar

    [31]

    衣玮, 吴奇, 孙力玲 2017 物理学报 66 037402Google Scholar

    Yi W, Wu Q, Sun L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [32]

    Toby B H, Von Dreele R B 2013 J. Appl. Crystallogr. 46 544Google Scholar

  • [1] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [2] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力. 物理学报, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [3] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [4] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究. 物理学报, 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [5] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [7] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [8] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响. 物理学报, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [9] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体. 物理学报, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [10] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究. 物理学报, 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [11] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究. 物理学报, 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [12] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质. 物理学报, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [13] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [14] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [15] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [16] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响. 物理学报, 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [17] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性. 物理学报, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [18] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力. 物理学报, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [19] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究. 物理学报, 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  6001
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-22
  • 修回日期:  2020-12-23
  • 上网日期:  2021-05-11
  • 刊出日期:  2021-05-20

/

返回文章
返回