搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长

祝梦遥 鲁军 马佳淋 李利霞 王海龙 潘东 赵建华

引用本文:
Citation:

高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长

祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华

Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films

Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua
PDF
导出引用
  • 理论预言窄禁带稀磁半导体(Ga,Mn)Sb及其异质结构可能存在量子反常霍尔效应等新奇特性, 近年来受到了特别关注. 但是, 由于(Ga,Mn)Sb薄膜生长窗口窄, 纯相(Ga,Mn)Sb薄膜制备比较困难, 迄今关于这类材料的研究报道为数不多. 本文采用低温分子束外延的方法, 通过优化生长条件, 成功制备出厚度为10 nm, Mn含量在0.016至0.039之间的多组(Ga,Mn)Sb薄膜样品. 生长过程中反射式高能电子衍射原位监测和磁性测量都表明没有MnSb等杂相的偏析, 同时原子力显微镜图像表明其表面形貌平滑, 粗糙度小. 通过生长后退火处理, (Ga,Mn)Sb薄膜的最高居里温度达到30 K. 此外, 本文研究了霍尔电阻和薄膜电阻随磁场的变化关系, 在低温下观测到明显的反常霍尔效应.
    Diluted magnetic semiconductor (Ga, Mn)Sb and its related hetero-structures have attracted much attention in recent years since they are predicted to have some novel properties, such as the quantum anomalous Hall effect etc. However, it is not easy to grow high-quality (Ga, Mn)Sb films due to their narrow growth window. In this article, a series of 10 nm thick (Ga, Mn)Sb films with different Mn contents from 0.016 to 0.039 have been grown by molecular-beam epitaxy at low temperaturs (~230 ℃). The films have high crystalline quality as confirmed by in situ reflection high-energy electron diffraction and ex situ atomic force microscopy, and no MnSb phase could be observed. Curie temperature up to 30 K has been obtained in one (Ga, Mn)Sb film after post-growth thermal annealing. The magneto-resistance and anomalous Hall effect of this film have also been investigated at different temperatures.
    • 基金项目: 国家重点科学研究发展计划项目(批准号: 2015CB921503)和国家自然科学基金重点项目(批准号: 61334006)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2015CB921503), and the National Natural Science Foundation of China (Grant No. 61334006).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Žutić I, Fabian J, Das Sarma S 2004 Reviews of Modern Physics 76 323

    [3]

    Dietl T, Ohno H 2014 Reviews of Modern Physics 86 187

    [4]

    Wang H L, Chen L, Zhao J H 2013 Science China Physics, Mechanics and Astronomy 56 99

    [5]

    He Z X, Zheng H Z, Huang X J, Wang H L, Zhao J H 2014 Chin. Phys. B 23 77801

    [6]

    Woodbury D A, Blakemore J 1973 Physical Review B 8 3803

    [7]

    Munekata H, Ohno H, von Molnár S, Segmäler A, Chang L L, Esaki L 1989 Physical Review Letters 63 1849

    [8]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Applied Physics Letters 69 363

    [9]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Letters 11 2584

    [10]

    Linnarsson M, Janz E, Monemar B, Kleverman M, Thilderkvist A 1997 Physical Review B 55 6938

    [11]

    Georgitse E I, Gutsulyak L M, Ivanov-Omskii I I, Masterov V F, Smirnov V A, Shtel’makh K F 1992 Soviet physics. Semiconductors 26 50

    [12]

    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H 1997 Physical Review Letters 78 4617

    [13]

    Vurgaftman I, Meyer J R 2004 Physical Review B 70 115320

    [14]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E: Low-dimensional Systems and Nanostructures 7 981

    [15]

    Lim W L, Wojtowicz T, Liu X, Dobrowolska M, Furdyna J K 2004 Physica E: Low-dimensional Systems and Nanostructures 20 346

    [16]

    Nishitani Y, Endo M, Matsukura F, Ohno H 2010 Physica E: Low-dimensional Systems and Nanostructures 42 2681

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Žutić I, Fabian J, Das Sarma S 2004 Reviews of Modern Physics 76 323

    [3]

    Dietl T, Ohno H 2014 Reviews of Modern Physics 86 187

    [4]

    Wang H L, Chen L, Zhao J H 2013 Science China Physics, Mechanics and Astronomy 56 99

    [5]

    He Z X, Zheng H Z, Huang X J, Wang H L, Zhao J H 2014 Chin. Phys. B 23 77801

    [6]

    Woodbury D A, Blakemore J 1973 Physical Review B 8 3803

    [7]

    Munekata H, Ohno H, von Molnár S, Segmäler A, Chang L L, Esaki L 1989 Physical Review Letters 63 1849

    [8]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Applied Physics Letters 69 363

    [9]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Letters 11 2584

    [10]

    Linnarsson M, Janz E, Monemar B, Kleverman M, Thilderkvist A 1997 Physical Review B 55 6938

    [11]

    Georgitse E I, Gutsulyak L M, Ivanov-Omskii I I, Masterov V F, Smirnov V A, Shtel’makh K F 1992 Soviet physics. Semiconductors 26 50

    [12]

    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H 1997 Physical Review Letters 78 4617

    [13]

    Vurgaftman I, Meyer J R 2004 Physical Review B 70 115320

    [14]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E: Low-dimensional Systems and Nanostructures 7 981

    [15]

    Lim W L, Wojtowicz T, Liu X, Dobrowolska M, Furdyna J K 2004 Physica E: Low-dimensional Systems and Nanostructures 20 346

    [16]

    Nishitani Y, Endo M, Matsukura F, Ohno H 2010 Physica E: Low-dimensional Systems and Nanostructures 42 2681

计量
  • 文章访问数:  2210
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-07
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-04-05

高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长

  • 1. 中国科学院半导体研究所半导体超晶格国家重点实验室, 北京 100083
    基金项目: 

    国家重点科学研究发展计划项目(批准号: 2015CB921503)和国家自然科学基金重点项目(批准号: 61334006)资助的课题.

摘要: 理论预言窄禁带稀磁半导体(Ga,Mn)Sb及其异质结构可能存在量子反常霍尔效应等新奇特性, 近年来受到了特别关注. 但是, 由于(Ga,Mn)Sb薄膜生长窗口窄, 纯相(Ga,Mn)Sb薄膜制备比较困难, 迄今关于这类材料的研究报道为数不多. 本文采用低温分子束外延的方法, 通过优化生长条件, 成功制备出厚度为10 nm, Mn含量在0.016至0.039之间的多组(Ga,Mn)Sb薄膜样品. 生长过程中反射式高能电子衍射原位监测和磁性测量都表明没有MnSb等杂相的偏析, 同时原子力显微镜图像表明其表面形貌平滑, 粗糙度小. 通过生长后退火处理, (Ga,Mn)Sb薄膜的最高居里温度达到30 K. 此外, 本文研究了霍尔电阻和薄膜电阻随磁场的变化关系, 在低温下观测到明显的反常霍尔效应.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回