搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长

祝梦遥 鲁军 马佳淋 李利霞 王海龙 潘东 赵建华

引用本文:
Citation:

高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长

祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华

Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films

Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua
PDF
导出引用
  • 理论预言窄禁带稀磁半导体(Ga,Mn)Sb及其异质结构可能存在量子反常霍尔效应等新奇特性, 近年来受到了特别关注. 但是, 由于(Ga,Mn)Sb薄膜生长窗口窄, 纯相(Ga,Mn)Sb薄膜制备比较困难, 迄今关于这类材料的研究报道为数不多. 本文采用低温分子束外延的方法, 通过优化生长条件, 成功制备出厚度为10 nm, Mn含量在0.016至0.039之间的多组(Ga,Mn)Sb薄膜样品. 生长过程中反射式高能电子衍射原位监测和磁性测量都表明没有MnSb等杂相的偏析, 同时原子力显微镜图像表明其表面形貌平滑, 粗糙度小. 通过生长后退火处理, (Ga,Mn)Sb薄膜的最高居里温度达到30 K. 此外, 本文研究了霍尔电阻和薄膜电阻随磁场的变化关系, 在低温下观测到明显的反常霍尔效应.
    Diluted magnetic semiconductor (Ga, Mn)Sb and its related hetero-structures have attracted much attention in recent years since they are predicted to have some novel properties, such as the quantum anomalous Hall effect etc. However, it is not easy to grow high-quality (Ga, Mn)Sb films due to their narrow growth window. In this article, a series of 10 nm thick (Ga, Mn)Sb films with different Mn contents from 0.016 to 0.039 have been grown by molecular-beam epitaxy at low temperaturs (~230 ℃). The films have high crystalline quality as confirmed by in situ reflection high-energy electron diffraction and ex situ atomic force microscopy, and no MnSb phase could be observed. Curie temperature up to 30 K has been obtained in one (Ga, Mn)Sb film after post-growth thermal annealing. The magneto-resistance and anomalous Hall effect of this film have also been investigated at different temperatures.
    • 基金项目: 国家重点科学研究发展计划项目(批准号: 2015CB921503)和国家自然科学基金重点项目(批准号: 61334006)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2015CB921503), and the National Natural Science Foundation of China (Grant No. 61334006).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Žutić I, Fabian J, Das Sarma S 2004 Reviews of Modern Physics 76 323

    [3]

    Dietl T, Ohno H 2014 Reviews of Modern Physics 86 187

    [4]

    Wang H L, Chen L, Zhao J H 2013 Science China Physics, Mechanics and Astronomy 56 99

    [5]

    He Z X, Zheng H Z, Huang X J, Wang H L, Zhao J H 2014 Chin. Phys. B 23 77801

    [6]

    Woodbury D A, Blakemore J 1973 Physical Review B 8 3803

    [7]

    Munekata H, Ohno H, von Molnár S, Segmäler A, Chang L L, Esaki L 1989 Physical Review Letters 63 1849

    [8]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Applied Physics Letters 69 363

    [9]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Letters 11 2584

    [10]

    Linnarsson M, Janz E, Monemar B, Kleverman M, Thilderkvist A 1997 Physical Review B 55 6938

    [11]

    Georgitse E I, Gutsulyak L M, Ivanov-Omskii I I, Masterov V F, Smirnov V A, Shtel’makh K F 1992 Soviet physics. Semiconductors 26 50

    [12]

    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H 1997 Physical Review Letters 78 4617

    [13]

    Vurgaftman I, Meyer J R 2004 Physical Review B 70 115320

    [14]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E: Low-dimensional Systems and Nanostructures 7 981

    [15]

    Lim W L, Wojtowicz T, Liu X, Dobrowolska M, Furdyna J K 2004 Physica E: Low-dimensional Systems and Nanostructures 20 346

    [16]

    Nishitani Y, Endo M, Matsukura F, Ohno H 2010 Physica E: Low-dimensional Systems and Nanostructures 42 2681

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Žutić I, Fabian J, Das Sarma S 2004 Reviews of Modern Physics 76 323

    [3]

    Dietl T, Ohno H 2014 Reviews of Modern Physics 86 187

    [4]

    Wang H L, Chen L, Zhao J H 2013 Science China Physics, Mechanics and Astronomy 56 99

    [5]

    He Z X, Zheng H Z, Huang X J, Wang H L, Zhao J H 2014 Chin. Phys. B 23 77801

    [6]

    Woodbury D A, Blakemore J 1973 Physical Review B 8 3803

    [7]

    Munekata H, Ohno H, von Molnár S, Segmäler A, Chang L L, Esaki L 1989 Physical Review Letters 63 1849

    [8]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Applied Physics Letters 69 363

    [9]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnár S 2011 Nano Letters 11 2584

    [10]

    Linnarsson M, Janz E, Monemar B, Kleverman M, Thilderkvist A 1997 Physical Review B 55 6938

    [11]

    Georgitse E I, Gutsulyak L M, Ivanov-Omskii I I, Masterov V F, Smirnov V A, Shtel’makh K F 1992 Soviet physics. Semiconductors 26 50

    [12]

    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H 1997 Physical Review Letters 78 4617

    [13]

    Vurgaftman I, Meyer J R 2004 Physical Review B 70 115320

    [14]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E: Low-dimensional Systems and Nanostructures 7 981

    [15]

    Lim W L, Wojtowicz T, Liu X, Dobrowolska M, Furdyna J K 2004 Physica E: Low-dimensional Systems and Nanostructures 20 346

    [16]

    Nishitani Y, Endo M, Matsukura F, Ohno H 2010 Physica E: Low-dimensional Systems and Nanostructures 42 2681

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [3] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL‐2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运的研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231749
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [6] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [7] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [8] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [9] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [10] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [11] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [12] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [13] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [14] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [15] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
计量
  • 文章访问数:  5502
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-07
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-04-05

/

返回文章
返回