搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au(111)薄膜表面等离激元和热载流子输运性质的理论研究

张彩霞 马向超 张建奇

引用本文:
Citation:

Au(111)薄膜表面等离激元和热载流子输运性质的理论研究

张彩霞, 马向超, 张建奇

Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films

Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi
PDF
HTML
导出引用
  • 厚度低至原子层的金属薄膜具有优越的光吸收能力和导电特性, 尤其是在金属薄膜和介质界面激发的表面等离激元, 可以很好地捕获光子并产生热载流子, 使其在提高太阳能电池的光电转换效率、设计近红外波段的光电探测器和基于表面等离激元的传感器等方面表现出优异的性质. 然而, 目前还缺少对金属薄膜的表面等离激元和热载流子性质的系统理论研究. 本文基于多体第一性原理计算方法, 系统地研究了1—5个原子层厚Au(111)薄膜的表面等离激元特性, 以及由表面等离激元产生的热载流子的能量分布和输运性质. 研究结果表明, Au(111)薄膜具有低损耗的表面等离激元特性. 同时, 在Au(111)薄膜和介质界面激发的表面等离激元约束程度较强, 可以增强局部电场, 这在纳米光子学应用中至关重要. 此外, Au(111)薄膜具有高热载流子产生效率, 且产生的热电子及热空穴能量较高, 具有优异的平均自由程和平均自由时间. 意外的是, Au(111)薄膜的直流电导率显著优于块体Au. 这些结果为Au(111)薄膜在光电子器件和能量转换设备等的设计和制造提供了新的思路和理论基础.
    Metal films with a thickness as low as atomic layer have superior light absorption capabilities and conductive properties, especially the surface plasmons excited at the interface between metal film and dielectric can well capture photons and generate hot carriers, making them more efficient in improving the photoelectric conversion efficiency of solar cells, designing photodetectors in the near-infrared band, and sensors based on surface plasmon. However, there is still a lack of systematic theoretical studies on the surface plasmon and hot carrier properties of metal thin films. Based on the many-body first-principles calculation method, in this paper studied systematically are the surface plasmon properties of Au(111) films with thickness in a range from monolayer to 5 monolayers, and the energy distribution and transport properties of hot carriers generated by surface plasmons. The study results show that Au(111) films have low-loss surface plasmon properties. Meanwhile, the surface plasmons excited at the interface between the Au(111) film and the dielectric are strongly confined, which can enhance the local electric field, thus being crucial in nanophotonics applications. In addition, Au(111) film has a high efficiency generating hot carriers , and the generated hot electrons and hot holes are high in energy, and excellent in mean free path and mean free time. Unexpectedly, the direct current conductivity of Au(111) film is significantly better than that of bulk Au. These results provide new ideas and theoretical basis for the design and fabrication of Au(111) films in optoelectronic devices and energy conversion devices.
      通信作者: 马向超, xcma@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704298, 61904138)、陕西省自然科学基础研究计划(项目编号: 2022JZ-04)和陕西省教育厅专项科研计划项目(项目编号: 20JK0928)资助的课题.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704298, 61904138), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JZ-04), and the Special Scientific Research Program of Education Department of Shaanxi Provincial, China (Grant No. 20JK0928).
    [1]

    Moskovits M 2015 Nat. Nanotechnol. 10 6Google Scholar

    [2]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501Google Scholar

    [3]

    Maier S A 2007 Plasmonics: fundamentals and applications (Bath: Springer) pp177–191

    [4]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [5]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [6]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [7]

    Babicheva V E, Zhukovsky S V, Ikhsanov R S, Protsenko I E, Smetanin I V, Uskov A 2015 ACS Photonics 2 1039Google Scholar

    [8]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [9]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [10]

    Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S R, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [11]

    Xue X T, Fan Y H, Segal E, Wang W P, Yang F, Wang Y F, Zhao F T, Fu W Y, Ling Y H, Salomon A, Zhang Z 2021 Mater. Today 46 54Google Scholar

    [12]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [13]

    Zhang C, Guney D O, Pearce J M 2016 Mater. Res. Express 3 105034Google Scholar

    [14]

    Li Z J, Lü W, Zhang C, Qin J W, Wei W, Shao J J, Wang D W, Li B H, Kang F Y, Yang Q H 2014 Nanoscale 6 9554Google Scholar

    [15]

    Shahjamali M M, Salvador M, Bosman M, Ginger D S, Xue C 2014 J. Phys. Chem. C 118 12459Google Scholar

    [16]

    Tsysar K M, Andreev V G, Vdovin V A 2016 International Conference on Micro- and Nano-Electronics 2016 Zvenigorod, Russia, October 3-7, 2016 pp40–45

    [17]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [18]

    初凤红, 蔡海文, 瞿荣辉, 方祖捷 2009 激光与光电子进展 46 58

    Chu F H, Cai H W, Qu R H, Fang Z J 2009 Laser Optoelectron. Prog. 46 58

    [19]

    Zhu Q, Hong Y, Cao G, Zhang Y, Wang J W 2020 ACS Nano 14 17091Google Scholar

    [20]

    Forti S, Link S, Sthr A, Niu Y, Zakharov A A, Coletti C, Starke U 2020 Nat. Commun. 11 2236Google Scholar

    [21]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 Softwarex 6 278Google Scholar

    [22]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2009 Phys. Rev. Lett. 102 136406Google Scholar

    [23]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [24]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [25]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [26]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [27]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljacic M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [28]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

    [29]

    Habib A, Florio F, Sundararaman R 2018 J. Opt. 20 064001Google Scholar

    [30]

    Shore K, Chan D 1990 Electron. Lett. 26 1206Google Scholar

    [31]

    Kolwas K, Derkachova A 2020 Nanomaterials 10 1411Google Scholar

    [32]

    Laref S, Cao J, Asaduzzaman A, Runge K, Deymier P, Ziolkowski R W, Miyawaki M, Muralidharan K 2013 Opt. Express 21 11827Google Scholar

    [33]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [34]

    Bernardi M, Vigil-Fowler D, Lischner J, Neaton J B, Louie S G 2014 Phys. Rev. Lett. 112 257402Google Scholar

    [35]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 Proc. Natl. Acad. Sci. U. S. A. 112 5291Google Scholar

    [36]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [37]

    Bauer R, Schmid A, Pavone P, Strauch D 1998 Phys. Rev. B 57 11276Google Scholar

    [38]

    Giri A, Gaskins J T, Li L Q, Wang Y S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [39]

    Allen P 1971 Phys. Rev. B 3 305Google Scholar

    [40]

    Rangel T, Kecik D, Trevisanutto P E, Rignanese G M, Van Swygenhoven H, Olevano V 2012 Phys. Rev. B 86 125125Google Scholar

    [41]

    Xu M, Yang J Y, Zhang S Y, Liu L H 2017 Phys. Rev. B 96 115154Google Scholar

    [42]

    Ma X C, Sun H, Wang Y C, Wu X, Zhang J Q 2018 Nano Energy 53 932Google Scholar

    [43]

    Wang Y, Chen L Y, Xu B, Zheng W M, Zhang R J, Qian D L, Zhou S M, Zheng Y X, Dai N, Yang Y M, Ding K B, Zhang X M 1998 Thin Solid Films 313 232

    [44]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photonics Technol. Lett. 27 821Google Scholar

    [45]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [46]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [47]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [48]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [49]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nature Communications 6 7044

    [50]

    Gladskikh I A, Leonov N B, Przhibel'skii S G, Vartanyan T A 2014 J. Opt. Technol. 81 280Google Scholar

    [51]

    Antonets I V, Kotov L N, Nekipelov S V, Golubev Y A 2004 Tech. Phys. 49 306Google Scholar

    [52]

    Robert C W, Melvin J A, William H B 2003 CRC Handbook of Chemistry and Physics (84th Ed.) (Florida: Boca Raton) pp13–14

  • 图 1  (a) Au面心立方结构; (b) 计算块体Au电子结构使用的原胞; (c) 块体Au的第一布里渊区, 其能带结构和声子谱沿$k$点路径W-L-G-X-W-K计算; (d) Au(111)薄膜按照“膜按照“方式堆积示意图; (e) Au(111)薄膜的第一布里渊区, 其能带结构和声子谱沿$k$点路径G-M-K-G计算

    Fig. 1.  (a) Face-centered cubic structure of Au; (b) the primitive cell used to calculate the electronic structure of bulk Au; (c) the first Brillouin zone of bulk Au, and the irreducible k-point path W-L-G-X-W-K is used for calculating its band structure and phonon spectra; (d) Au(111) films stacked in "ABC" manner; (e) the first Brillouin zone of Au(111) films, the irreducible k-point path G-M-K-G is used for calculating its band structure and phonon spectra.

    图 2  能带结构 (a)块体Au; (b)—(f) 1—5层Au(111)薄膜

    Fig. 2.  Energy band structure of (a) bulk Au and (b)–(f) Au(111) films with thickness from 1 to 5 atomic layers.

    图 3  声子谱 (a) 块体Au; (b)—(f) 1—5层Au(111)薄膜

    Fig. 3.  Phonon structure of (a) bulk Au and (b–(f) Au(111) films with thickness from 1 to 5 atomic layers .

    图 4  介电函数虚部 (a) 块体Au的Johnson实验测量结果和DFT理论计算结果; (b) 块体Au和1—5层Au(111)薄膜

    Fig. 4.  (a) The imaginary part of the dielectric function of Johnson experimental measurement result and DFT theoretical calculation result of bulk Au; (b) the imaginary part of the dielectric function of bulk Au and Au(111) films with thickness from 1 to 5 atomic layers.

    图 5  (a) 块体Au的介电函数实部; (b) 1—5层Au(111)薄膜的介电函数实部

    Fig. 5.  The real part of the dielectric function of (a) bulk Au and (b) Au(111) films with thickness from 1 to 5 atomic layers.

    图 6  块体Au和Au(111)薄膜与空气界面激发的SPP色散关系

    Fig. 6.  Dispersion relation of SPP excited at the interface of Bulk Au and Au(111) films with air.

    图 7  块体Au和Au(111)薄膜与SiO2界面激发的SPP色散关系

    Fig. 7.  Dispersion relation of SPP excited at the interface of bulk Au and Au(111) films with SiO2.

    图 8  块体Au和Au(111)薄膜与介质界面激发的SPP有效传播长度

    Fig. 8.  SPP effective propagation length at the interface of bulk Au and Au(111) films.

    图 9  块体Au和Au(111)薄膜与电介质界面激发的SPP约束比

    Fig. 9.  SPP confinement ratio at the interface of bulk Au and Au(111) films with dielectrics.

    图 10  热载流子的能量分布 (a) 块体Au; (b)—(f) 1—5层Au(111)薄膜

    Fig. 10.  The energy distribution of hot carriers generated by direct interband electronic transitions for (a) bulk Au and (b)—(f) Au(111) films with thickness from 1 to 5 atomic layers.

    图 11  块体Au和Au(111)薄膜中热载流子的平均自由时间

    Fig. 11.  Mean free times of hot carriers in bulk Au and Au(111) films with thickness from 1 to 5 atomic layers .

    图 12  块体Au和Au(111)薄膜热载流子的平均自由程

    Fig. 12.  Mean free paths of hot carriers in bulk Au and Au(111) films with thickness from 1 to 5 atomic layers.

    图 13  (a) 块体Au和1—5层Au(111)薄膜在0—500 K温度范围内的直流电导率; (b) 块体Au和(c) 1—5层Au(111)薄膜加权传输Eliashberg谱函数$ \alpha _v^2 F\left( \omega \right) $

    Fig. 13.  (a) DC conductivity of bulk Au and Au(111) films with thickness from 1 to 5 atomic layers in the temperature range of 0–500 K, the transport-weighted Eliashberg spectral function of (b) bulk Au and (c) Au(111) films with thickness from 1 to 5 atomic layers.

    表 1  传输常数$\lambda $

    Table 1.  The transport constant $\lambda $.

    块体Au1层2层3层4层5层
    $\lambda $629.5210.2418.278.857.756.39
    下载: 导出CSV

    表 2  费米速度${\nu _{\rm{F}}}$

    Table 2.  The Fermi velocity ${\nu _{\rm{F}}}$.

    块体Au1层2层3层4层5层
    ${\nu _F}$0.620.680.510.500.490.48
    下载: 导出CSV
  • [1]

    Moskovits M 2015 Nat. Nanotechnol. 10 6Google Scholar

    [2]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501Google Scholar

    [3]

    Maier S A 2007 Plasmonics: fundamentals and applications (Bath: Springer) pp177–191

    [4]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [5]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [6]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [7]

    Babicheva V E, Zhukovsky S V, Ikhsanov R S, Protsenko I E, Smetanin I V, Uskov A 2015 ACS Photonics 2 1039Google Scholar

    [8]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [9]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [10]

    Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S R, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [11]

    Xue X T, Fan Y H, Segal E, Wang W P, Yang F, Wang Y F, Zhao F T, Fu W Y, Ling Y H, Salomon A, Zhang Z 2021 Mater. Today 46 54Google Scholar

    [12]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [13]

    Zhang C, Guney D O, Pearce J M 2016 Mater. Res. Express 3 105034Google Scholar

    [14]

    Li Z J, Lü W, Zhang C, Qin J W, Wei W, Shao J J, Wang D W, Li B H, Kang F Y, Yang Q H 2014 Nanoscale 6 9554Google Scholar

    [15]

    Shahjamali M M, Salvador M, Bosman M, Ginger D S, Xue C 2014 J. Phys. Chem. C 118 12459Google Scholar

    [16]

    Tsysar K M, Andreev V G, Vdovin V A 2016 International Conference on Micro- and Nano-Electronics 2016 Zvenigorod, Russia, October 3-7, 2016 pp40–45

    [17]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [18]

    初凤红, 蔡海文, 瞿荣辉, 方祖捷 2009 激光与光电子进展 46 58

    Chu F H, Cai H W, Qu R H, Fang Z J 2009 Laser Optoelectron. Prog. 46 58

    [19]

    Zhu Q, Hong Y, Cao G, Zhang Y, Wang J W 2020 ACS Nano 14 17091Google Scholar

    [20]

    Forti S, Link S, Sthr A, Niu Y, Zakharov A A, Coletti C, Starke U 2020 Nat. Commun. 11 2236Google Scholar

    [21]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 Softwarex 6 278Google Scholar

    [22]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2009 Phys. Rev. Lett. 102 136406Google Scholar

    [23]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [24]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [25]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [26]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [27]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljacic M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [28]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

    [29]

    Habib A, Florio F, Sundararaman R 2018 J. Opt. 20 064001Google Scholar

    [30]

    Shore K, Chan D 1990 Electron. Lett. 26 1206Google Scholar

    [31]

    Kolwas K, Derkachova A 2020 Nanomaterials 10 1411Google Scholar

    [32]

    Laref S, Cao J, Asaduzzaman A, Runge K, Deymier P, Ziolkowski R W, Miyawaki M, Muralidharan K 2013 Opt. Express 21 11827Google Scholar

    [33]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [34]

    Bernardi M, Vigil-Fowler D, Lischner J, Neaton J B, Louie S G 2014 Phys. Rev. Lett. 112 257402Google Scholar

    [35]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 Proc. Natl. Acad. Sci. U. S. A. 112 5291Google Scholar

    [36]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [37]

    Bauer R, Schmid A, Pavone P, Strauch D 1998 Phys. Rev. B 57 11276Google Scholar

    [38]

    Giri A, Gaskins J T, Li L Q, Wang Y S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [39]

    Allen P 1971 Phys. Rev. B 3 305Google Scholar

    [40]

    Rangel T, Kecik D, Trevisanutto P E, Rignanese G M, Van Swygenhoven H, Olevano V 2012 Phys. Rev. B 86 125125Google Scholar

    [41]

    Xu M, Yang J Y, Zhang S Y, Liu L H 2017 Phys. Rev. B 96 115154Google Scholar

    [42]

    Ma X C, Sun H, Wang Y C, Wu X, Zhang J Q 2018 Nano Energy 53 932Google Scholar

    [43]

    Wang Y, Chen L Y, Xu B, Zheng W M, Zhang R J, Qian D L, Zhou S M, Zheng Y X, Dai N, Yang Y M, Ding K B, Zhang X M 1998 Thin Solid Films 313 232

    [44]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photonics Technol. Lett. 27 821Google Scholar

    [45]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [46]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [47]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [48]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [49]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nature Communications 6 7044

    [50]

    Gladskikh I A, Leonov N B, Przhibel'skii S G, Vartanyan T A 2014 J. Opt. Technol. 81 280Google Scholar

    [51]

    Antonets I V, Kotov L N, Nekipelov S V, Golubev Y A 2004 Tech. Phys. 49 306Google Scholar

    [52]

    Robert C W, Melvin J A, William H B 2003 CRC Handbook of Chemistry and Physics (84th Ed.) (Florida: Boca Raton) pp13–14

  • [1] 见超超, 马向超, 赵子涵, 张建奇. MXenes等离激元诱导热载流子产生与输运温度依变性. 物理学报, 2024, 73(11): 117801. doi: 10.7498/aps.73.20231924
    [2] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [3] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [5] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [6] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [7] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [11] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [12] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [13] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [14] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [17] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [18] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [19] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [20] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究. 物理学报, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
计量
  • 文章访问数:  4482
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-13
  • 上网日期:  2022-11-11
  • 刊出日期:  2022-11-20

/

返回文章
返回