搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层阿基米德螺线的表面等离激元涡旋产生方法

吴立祥 李鑫 杨元杰

引用本文:
Citation:

基于双层阿基米德螺线的表面等离激元涡旋产生方法

吴立祥, 李鑫, 杨元杰

Generation of surface plasmon vortices based on double-layer Archimedes spirals

Wu Li-Xiang, Li Xin, Yang Yuan-Jie
PDF
HTML
导出引用
  • 利用金属超表面结构可以激发表面等离激元涡旋光, 由于表面等离激元可以突破衍射极限以及具有很强的场增强效应这两个特性, 因而可以设计微纳级别的光学芯片来激发涡旋光. 本文提出了一种产生涡旋光的双层阿基米德螺线分布的矩形纳米孔阵列, 通过理论分析与FDTD仿真验证相结合的研究方法, 发现可以通过调节入射圆偏振光的手性、内外两层螺线之间的距离、纳米孔阵列的旋转变化速度因子、螺线的段数以及螺距这五个参数, 改变所产生的表面等离激元涡旋光的拓扑荷数. 这种结构由于可以调控的参数多, 自由度大, 因此可以十分方便地对表面等离激元涡旋光进行调控.
    Surface plasmon polariton (SPP) is an electromagnetic oscillation which is produced by the interaction of free electrons on metal surface with incident light field. Using some specific metal metasurface structures, plasmonic vortices can be easily obtained. The SPP can well confine the light field within the interface between metal and medium. The SPP has two excellent characteristics: the ability to break through the diffraction limit and the strong field enhancing effect. Consequently, it has unique advantages in many applications, such as nanoparticle trapping, near-field imaging and sensing.The key point lies in selecting the incident light and the construction of metasurface structure when we want to produce SPP vortices. Especially the construction of metasurface structure has great influence on the generation of SPP vortices. So far, many structures have been proposed to produce SPP vortices. In 2015, Byoungho Lee research group (Lee S Y, Kim S J, Kwon H, Lee B 2015 IEEE Photonics Technol. Lett. 27 705) designed a structure of double-ring distributed nanoslits which can produce high-order plasmonic vortices by circularly polarized light. In addition, the use of Archimedes slit structure to generate optical vortices is currently a more common method. More recently, a novel plasmonic vortex lens was proposed to produce SPP vortices with arbitrary topological charges. The plasmonic vortex lens consists of an array of gold film nanoslits, and the superposing of the SPP field excited by each nanoslit can produce a composite plasmonic vortex. Here, we propose a novel spiral metasurface structure for generating surface plasmonic vortices. Using the combination of theoretical analysis and finite difference time domain (FDTD) simulation, we find that the topological charge quantity of surface plasmon vortices can be changed by adjusting five parameters, namely, the chirality of incident circularly polarized light, the difference in radius between inner and outer nanocavity array, the rotational velocity factor of nanocavity array, the number of segments of spiral, and the pitch of spiral. This metasurface structure has many adjustable parameters and each parameter can influence the final surface plasmon vortices. Therefore, the plasmonic vortices with an arbitrary topological charge quantity can be generated and manipulated simply by using such a metasurface structure. This work can be expected to have a very broad prospect of applications in super resolution microscopy, quantum cryptography, nanoparticle manipulation, optical data storage, and optical communication.
      通信作者: 杨元杰, dr.yang2003@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874102, 11474048)资助的课题
      Corresponding author: Yang Yuan-Jie, dr.yang2003@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874102, 11474048)
    [1]

    Maier S A 2007 Plasmonics: Fundamentals and applications (Berlin: Springer) pp49–52

    [2]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [3]

    Luo X G, Ishihara T 2004 Opt. Express 12 3055Google Scholar

    [4]

    Langhammer C, Larsson E M, Kasemo B, Zoric I 2010 Nano Lett. 10 3529Google Scholar

    [5]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [6]

    Wurtz G A, Pollard R, Zayats A V 2006 Phys. Rev. Lett. 97 057402Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    Yang Y J, Thirunavukkarasu G, Babiker M, Yuan J 2017 Phys. Rev. Lett. 119 094802Google Scholar

    [9]

    Chen C F, Ku C T, Tai Y H, Wei P K, Lin H N, Huang C B 2015 Nano Lett. 15 2746Google Scholar

    [10]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [11]

    Vedantam S, Lee H, Tang J, Conway J, Staffaroni M, Yablonovitch E 2009 Nano Lett. 9 3447Google Scholar

    [12]

    Gorodetski Y, Niv A, Kleiner V, Hasman E 2008 Phys. Rev. Lett. 101 043903Google Scholar

    [13]

    李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星 2015 物理学报 64 194201Google Scholar

    Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y, Zhu X 2015 Acta Phys. Sin. 64 194201Google Scholar

    [14]

    Lee S Y, Kim S J, Kwon H, Lee B 2015 IEEE Photonics Technol. Lett. 27 705Google Scholar

    [15]

    Tang B J, Zhang B F, Ding J P 2019 Appl. Opt. 58 833Google Scholar

    [16]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [17]

    Vallone G, D’AmbrosioV, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [18]

    Hong Z Y, Zhang J, Drinkwater B W 2015 Phys. Rev. Lett. 114 214301Google Scholar

    [19]

    Marzo A, Caleap M, Drinkwater B W 2018 Phys. Rev. Lett. 120 044301Google Scholar

    [20]

    Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547Google Scholar

    [21]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527Google Scholar

    [22]

    Nicolas A, Veissier L, Giner L, Giacobino E 2014 Nat. Photonics 8 234Google Scholar

    [23]

    Wang J, Yang J Y, Fazal I M, Ahmed N 2012 Nat. Photonics 6 488Google Scholar

    [24]

    Bozinovic N, Yue Y, Ren Y X, Tur M 2013 Science 340 1545Google Scholar

    [25]

    Rui G H, Zhan Q W, Cui Y P 2015 Sci. Rep. 5 13732Google Scholar

    [26]

    Yang S Y, Chen W B, Nelson R L, Zhan Q W 2009 Opt. Lett. 34 3048

  • 图 1  螺线分布的超表面结构示意图 (a)螺线的段数$q=1$; (b)螺线的段数$q=2$

    Fig. 1.  Schematic diagram of super-surface structure of spiral distribution: (a) Number of segments of helix is equal to 1; (b) number of segments of helix is equal to 2.

    图 2  内外两层螺线之间的距离$d = 0$时的结构示意图、电场强度以及相位分布图 (a)−(c) $\sigma=- 1$; (d)−(f) $\sigma=1$; (g)−(i) $\sigma=1$; (j)−(l) $\sigma=1$

    Fig. 2.  The obtained electric field intensity and phase distribution when distance between inner and outer spirals is equal to 0: (a)−(c) $\sigma=- 1$; (d)−(f) $\sigma=1$; (g)−(i) $\sigma=1$; (j)−(l) $\sigma=1$.

    图 3  内外两层螺线之间的距离$d = {\lambda _{\rm SPP}}/2$时的结构示意图、电场强度以及相位分布图 (a)−(c) $\sigma = - 1$; (d)−(f) $\sigma = - 1$; (g)−(i) $\sigma = 1$; (j)−(l) $\sigma = 1$; (m)−(o) $\sigma = 1$

    Fig. 3.  The obtained electric field intensity and phase distribution when distance between inner and outer spirals is equal to ${\lambda _{\rm SPP}}/2$: (a)−(c) $\sigma = - 1$; (d)−(f) $\sigma = - 1$; (g)−(i) $\sigma = 1$; (j)−(l) $\sigma = 1$; (m)−(o) $\sigma = 1$.

  • [1]

    Maier S A 2007 Plasmonics: Fundamentals and applications (Berlin: Springer) pp49–52

    [2]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [3]

    Luo X G, Ishihara T 2004 Opt. Express 12 3055Google Scholar

    [4]

    Langhammer C, Larsson E M, Kasemo B, Zoric I 2010 Nano Lett. 10 3529Google Scholar

    [5]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [6]

    Wurtz G A, Pollard R, Zayats A V 2006 Phys. Rev. Lett. 97 057402Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    Yang Y J, Thirunavukkarasu G, Babiker M, Yuan J 2017 Phys. Rev. Lett. 119 094802Google Scholar

    [9]

    Chen C F, Ku C T, Tai Y H, Wei P K, Lin H N, Huang C B 2015 Nano Lett. 15 2746Google Scholar

    [10]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [11]

    Vedantam S, Lee H, Tang J, Conway J, Staffaroni M, Yablonovitch E 2009 Nano Lett. 9 3447Google Scholar

    [12]

    Gorodetski Y, Niv A, Kleiner V, Hasman E 2008 Phys. Rev. Lett. 101 043903Google Scholar

    [13]

    李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星 2015 物理学报 64 194201Google Scholar

    Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y, Zhu X 2015 Acta Phys. Sin. 64 194201Google Scholar

    [14]

    Lee S Y, Kim S J, Kwon H, Lee B 2015 IEEE Photonics Technol. Lett. 27 705Google Scholar

    [15]

    Tang B J, Zhang B F, Ding J P 2019 Appl. Opt. 58 833Google Scholar

    [16]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [17]

    Vallone G, D’AmbrosioV, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [18]

    Hong Z Y, Zhang J, Drinkwater B W 2015 Phys. Rev. Lett. 114 214301Google Scholar

    [19]

    Marzo A, Caleap M, Drinkwater B W 2018 Phys. Rev. Lett. 120 044301Google Scholar

    [20]

    Tsai W Y, Huang J S, Huang C B 2014 Nano Lett. 14 547Google Scholar

    [21]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527Google Scholar

    [22]

    Nicolas A, Veissier L, Giner L, Giacobino E 2014 Nat. Photonics 8 234Google Scholar

    [23]

    Wang J, Yang J Y, Fazal I M, Ahmed N 2012 Nat. Photonics 6 488Google Scholar

    [24]

    Bozinovic N, Yue Y, Ren Y X, Tur M 2013 Science 340 1545Google Scholar

    [25]

    Rui G H, Zhan Q W, Cui Y P 2015 Sci. Rep. 5 13732Google Scholar

    [26]

    Yang S Y, Chen W B, Nelson R L, Zhan Q W 2009 Opt. Lett. 34 3048

  • [1] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [2] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [3] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [13] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [16] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [17] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [20] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
计量
  • 文章访问数:  4025
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-08-11
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

基于双层阿基米德螺线的表面等离激元涡旋产生方法

    基金项目: 国家自然科学基金(批准号: 11874102, 11474048)资助的课题

摘要: 利用金属超表面结构可以激发表面等离激元涡旋光, 由于表面等离激元可以突破衍射极限以及具有很强的场增强效应这两个特性, 因而可以设计微纳级别的光学芯片来激发涡旋光. 本文提出了一种产生涡旋光的双层阿基米德螺线分布的矩形纳米孔阵列, 通过理论分析与FDTD仿真验证相结合的研究方法, 发现可以通过调节入射圆偏振光的手性、内外两层螺线之间的距离、纳米孔阵列的旋转变化速度因子、螺线的段数以及螺距这五个参数, 改变所产生的表面等离激元涡旋光的拓扑荷数. 这种结构由于可以调控的参数多, 自由度大, 因此可以十分方便地对表面等离激元涡旋光进行调控.

English Abstract

    • 表面等离激元(surface plasmon polariton, SPP)[1]是由金属表面的自由电子与入射光场发生相互作用而产生的一种电磁振荡. 由于SPP能够将光场很好地束缚在金属和介质的分界面上, 同时还能突破衍射极限[2,3]并产生较高的场增强效应[4-6], 因而在产生光学旋涡[7,8]方面具有独特的优越性. 如果要利用激发SPP的方式来产生涡旋光, 关键在于入射光的选择以及亚波长结构的构造. 尤其是亚波长结构的构造, 对于激发SPP来产生涡旋光的影响较大. 到目前为止, 对于如何通过激发SPP来产生涡旋光的方式研究已经引起了很多研究者的兴趣, 利用线偏振光照射十字形或V字形金属纳米结构[9,10], 利用径向偏振光照射均匀对称分布的纳米圆环结构[11], 或者是使用圆偏振光照射螺旋金属纳米狭缝结构[12,13]都能用来产生SPP涡旋场.

      2015年, Lee等[14]设计了一种由双层圆环分布的纳米孔阵列构成的表面等离激元透镜, 这种结构的表面等离激元透镜可以在左旋或右旋圆偏振光照射时产生高阶的涡旋光, 而所产生的涡旋光的阶数为$ \sigma (2 n - 1) $, 其中n表示圆环分布中的矩形纳米孔旋转的角度与方位角的比值. 最近, Tang等[15]设计了一种新型的结构, 改进后的结构可以使得当左旋或右旋圆偏振光照射时产生的不再仅仅是符号相反的涡旋光, 而是根据结构参数设计得到的不同数值的涡旋光. 本文则将双层圆环结构与阿基米德狭缝结构相结合, 提出了一种双层螺线分布的矩形纳米孔阵列. 与上述两者不同的是, 本文的结构可供调控的参数更多, 同时还研究了内外两层螺线之间的距离对形成的涡旋场的影响. 本文先采用解析的方法, 计算相应空间内电场的分布情况, 得到了SPP涡旋场的拓扑荷数与入射圆偏振光的手性、内外两层螺线之间的距离、纳米孔阵列的旋转变化速度因子、螺线的段数以及螺距这五个参数的解析关系式. 随后使用三维有限时域差分法来对理论推导得到的关系式进行验证, 并将模拟仿真得到的电场分布情况与理论公式所描述的电场特性进行对比, 最终发现理论与仿真的结果符合得十分完美. 本文的研究将在超分辨显微镜[16]、量子信息技术[17]、粒子操纵[18-20]、光信息处理[21,22]与光通信[23,24]等领域具有一定的应用前景.

    • 本文采用的螺线结构为阿基米德螺线结构. 阿基米德螺线是一种比较常见的螺线结构, 它的结构可以根据结构旋性分成左旋阿基米德螺线结构及右旋阿基米德螺线结构, 在柱坐标系下, 完整的一圈阿基米德螺线可以用公式表示为[9]

      $ r = {r_0} \pm \frac{{m{\lambda _{\rm SPP}}}}{{2{\text{π}}}}\phi, $

      其中 ± 分别对应右旋与左旋阿基米德螺线结构, $ r_0 $为阿基米德螺线的初始半径, r为阿基米德螺线上任意一点到结构中心的距离, $ {\lambda _{\rm SPP}} $为产生的SPP波长, ϕ为方位角, 而m则表示阿基米德螺线的螺距与SPP波长的绝对值倍数(理论上可选取任意正数).

      常见的阿基米德螺线的段数$ q = 1 $, 而当螺线的段数$ q > 1 $时, 右旋阿基米德螺线结构表达形式为[25]

      $ \begin{split} r ={}& {r_0} + \frac{\varLambda }{{2{\text{π}}}}od \left( {q\phi,2{\text{π}}} \right) \\ ={}& {r_0} + \frac{\varLambda }{{\Delta \phi }}\left[ {\phi - \left( {a - 1} \right)\Delta \phi } \right], \end{split} $

      其中 Λ表示的是阿基米德螺线的螺距, q为构成SPP透镜的阿基米德螺线的段数, $ \Delta \phi = 2{\text{π}}/q $, a为一个正整数, 用来描述每一段阿基米德螺线, 满足关系$ 1 \leqslant a \leqslant q $.

      实际的超表面结构示意图如图1所示, 该超表面结构是由多个按照螺线分布的矩形纳米孔构成, 并且还分为内外两层, 将内外两层之间的距离用d来表示. 图1(a)所展示的是螺线的段数$ q = 1 $时的结构示意图, 而图1(b)所展示的则是螺线的段数$ q = 2 $时的结构示意图.

      图  1  螺线分布的超表面结构示意图 (a)螺线的段数$q=1$; (b)螺线的段数$q=2$

      Figure 1.  Schematic diagram of super-surface structure of spiral distribution: (a) Number of segments of helix is equal to 1; (b) number of segments of helix is equal to 2.

      当圆偏振光入射到该结构上时, 处于不同位置的矩形纳米腔均会激发SPP, 随后传播至中心位置发生干涉, 并产生相应的干涉场. 假设观测点为$ ( {\rho, \theta, z} ) $, 那么得到的光场将会是由每一段阿基米德螺线分布的矩形纳米腔作为激励源而产生的光场叠加和, 具体公式为

      $\begin{split} & {E_z}\left( {\rho,\theta,z} \right) \\ =\, & {{\rm e}^{ - {k_z}z}}\sum\limits_{a = 1}^q {\int_{\left( {a - 1} \right)\Delta \phi }^{a\Delta \phi } {{A_0}\cos \left( {\varphi \left( \phi \right) - \phi } \right)} }\\ & \times {{\rm e}^{{\rm i}\sigma \varphi \left( \phi \right)}}{{\rm e}^{{\rm i}{k_{\rm SPP}}\left( {r - \rho \cos \left( {\theta - \phi } \right)} \right)}}{\rm d}\phi,\end{split}$

      其中ρ, θ, z分别表示观测点到中心点的距离、方位角和沿z轴方向的坐标值; 而r, ϕ则分别表示激励源到中心点的半径与方位角; $ {k_z} $为SPP沿z轴方向在空气中的衰减系数; $ {k_{\rm SPP}} $为激发的SPP的波数; $ {A_0} $为在每个激励源位置的最大振幅; $ \varphi \left( \phi \right) $为激发的激励源相对于x轴方向的方位角分布函数; σ表示入射圆偏振光的手性($ \sigma = - 1 $$ \sigma = +1 $分别对应左旋与右旋圆偏振光). 入射圆偏振光在柱坐标系下可描述为[26]

      $ {{ E}_{\rm in}} = \frac{1}{{\sqrt 2 }}\left( {{{ e}_x} + {\rm i}\sigma {{ e}_y}} \right) = \frac{1}{{\sqrt 2 }}{{\rm e}^{{\rm i}\sigma \phi }}\left( {{{ e}_r} + {\rm i} \sigma {{ e}_\phi }} \right). $

      结构中设计外层排列的矩形纳米孔旋转的角度$ {\varphi _{\rm out}} $垂直于内层排列的矩形纳米孔旋转的角度$ {\varphi _{\rm in}} $, 由此可得到关系式

      $ \left\{ \begin{aligned} & {\varphi _{\rm in}}\left( \phi \right) = nq\phi, \\ &{\varphi _{\rm out}}\left( \phi \right) = nq\phi + {{\text{π}}}/{2}, \end{aligned} \right. $

      其中n为矩形纳米孔阵列的旋转变化速度因子, 表示的是一段螺线起始位置的矩形纳米孔与末尾位置的矩形纳米孔在过程中一共转过了$ 2 n{\text{π}}$的角度.

      假设由外层圆环带来的相位扰动可以忽略不计, 此时总的光场是外层与内层排列的矩形纳米孔所形成的光场的叠加,

      $ \begin{split} & {E_z}\left( {\rho,\theta,z} \right) \\ =\, & {A_0}{{\rm e}^{ - {k_z}z}}\sum\limits_{a = 1}^q \int_{\left( {a - 1} \right)\Delta \phi }^{a\Delta \phi } \left\{ \cos \left[ {\left( {nq - 1} \right)\phi } \right]\right. \\ & -\left.{\rm i}\sigma \sin \left[ {\left( {nq - 1} \right)\phi } \right]{{\rm e}^{{\rm i}{k_{\rm SPP}}d}}\right\} \\ & \times{{\rm e}^{{\rm i}\sigma nq\phi }}{{\rm e}^{{\rm i}{k_{\rm SPP}}\left[ {r - \rho \cos \left( {\theta - \phi } \right)} \right]}}{\rm d}\phi. \end{split} $

      根据内外两层螺线之间的距离的不同, 对(6)式进行进一步的推导, 得到关系式

      $ {E_z} \propto \left\{ {\begin{aligned} &{{J_{\left( {\sigma + mq} \right)}}\left( {{k_{{\rm{SPP}}}}\rho } \right),}\quad\quad\quad\quad\;\;\; {d = 0,}\\ & {{J_{\left[ {\sigma \left( {2nq - 1} \right) + mq} \right]}}\left( {{k_{{\rm{SPP}}}}\rho } \right),}\quad\quad {d = {\lambda _{{\rm{SPP}}}}/2,} \end{aligned}} \right. $

      (7)式即为本文的最终理论结论, 可以看出, 当$ d = 0 $$ d = {\lambda _{\rm SPP}}/2 $时, 结构中心处将会产生符合贝塞尔函数分布的隐失波形式的电场. 当$ d = 0 $时产生的是一个拓扑荷数为$ \sigma + mq $的SPP涡旋光; 而当$ d = {\lambda _{\rm SPP}}/2 $时产生的则是一个拓扑荷数为$ \sigma \left( {2 nq - 1} \right) + mq $的SPP涡旋光.

    • 借助软件工具来对上述理论结果进行验证, 这里使用三维有限时域差分法(finite difference time domain, FDTD)来进行模拟仿真, 具体的参数设置为: 入射光选用波长为980 nm的圆偏振光, 相应产生的SPP的波长为$ {\lambda _{\rm SPP}} = 967 $ nm; 金膜的厚度设置为100 nm, 金膜的介电常数为$ \varepsilon = $ –38.31 + i1.16, 金膜下表面的介质为石英, 石英衬底的折射率为1.45; 在金膜上刻蚀的矩形纳米孔的深度为100 nm, 长度为400 nm, 宽度为100 nm; 内层排列的矩形纳米孔的半径为4 μm, 外层排列的矩形纳米孔的半径为4.483 μm, 进行结果观察的观测平面的位置在金膜上方20 nm处. 进行FDTD仿真的网格参数设置为20 nm × 20 nm × 50 nm, 边界条件选择完美匹配层(perfectly matched layer, PML).

      图2给出了内外两层螺线之间的距离$ d = 0 $时的超表面结构示意图、最终的电场强度以及相位分布图. 首先可以确认, 该超表面结构能够成功地激发SPP涡旋光. 图2(a)图2(c)表明: 当阿基米德螺线的螺距与SPP波长的绝对值倍数$ m = 1 $, 螺线的段数$ q = 1 $, 左旋圆偏振光入射时, 可以在超表面的结构中心处观察到聚焦现象. 图2(d)图2(f)改为右旋圆偏振光入射, 其他参数不变, 在结构中心处可以观察到中心为暗斑的交叉明暗圆环, 根据其中的相位分布图可知此时产生的是拓扑荷数为2的SPP涡旋光; 如图2(g)图2(i)所示, 将螺线的段数设定为$ q = 2 $时, 螺距与SPP波长的绝对值倍数$ m = 1 $, 入射光为右旋圆偏振光时, 得到的将会是拓扑荷数为3的SPP涡旋光; 图2(j)图2(l)描述了螺线的段数$ q = 2 $, 螺距与SPP波长的绝对值倍数$ m = 2 $, 入射光为右旋圆偏振光时的结构示意图、电场强度图以及相位分布图, 结果产生的是拓扑荷数为5的SPP涡旋光. 上述四种情况所得到的SPP涡旋光的拓扑荷数满足(7)式中$ d = 0 $时的关系式, 理论与仿真结果一致.

      图  2  内外两层螺线之间的距离$d = 0$时的结构示意图、电场强度以及相位分布图 (a)−(c) $\sigma=- 1$; (d)−(f) $\sigma=1$; (g)−(i) $\sigma=1$; (j)−(l) $\sigma=1$

      Figure 2.  The obtained electric field intensity and phase distribution when distance between inner and outer spirals is equal to 0: (a)−(c) $\sigma=- 1$; (d)−(f) $\sigma=1$; (g)−(i) $\sigma=1$; (j)−(l) $\sigma=1$.

      图3给出的则是当内外两层螺线之间的距离$ d = {\lambda _{\rm SPP}}/2 $时的超表面结构示意图、最终的电场强度以及相位分布图. 根据(7)式中的关系, 此时还需要考虑矩形纳米孔阵列的旋转变化速度因子n可能对结构中心的电场带来的影响.

      图  3  内外两层螺线之间的距离$d = {\lambda _{\rm SPP}}/2$时的结构示意图、电场强度以及相位分布图 (a)−(c) $\sigma = - 1$; (d)−(f) $\sigma = - 1$; (g)−(i) $\sigma = 1$; (j)−(l) $\sigma = 1$; (m)−(o) $\sigma = 1$

      Figure 3.  The obtained electric field intensity and phase distribution when distance between inner and outer spirals is equal to ${\lambda _{\rm SPP}}/2$: (a)−(c) $\sigma = - 1$; (d)−(f) $\sigma = - 1$; (g)−(i) $\sigma = 1$; (j)−(l) $\sigma = 1$; (m)−(o) $\sigma = 1$.

      图3使用了控制变量的方法分别对理论结果中所描述的入射光的手性σ、矩形纳米孔阵列的旋转变化速度因子n、螺线的段数q以及螺距与SPP波长的绝对值倍数m这四个变量进行了仿真. 若按照理论推导的结果进行计算, 此刻所激发的应该为拓扑荷数为$ \sigma \left( {2 nq - 1} \right) + mq $的SPP涡旋光. 图3(a)图3(c)说明当左旋圆偏振光入射到结构参数为$ m = n = q = 1 $的超表面上时, 激发了聚焦电场; 当改为右旋圆偏振光入射到相同的结构上时, 就会如图3(g)图3(i)所示激发出2阶的SPP涡旋光; 若此时分别将速度因子n以及螺线的段数q的取值增大为2, 则得到图3(j)(l)图3(m)(o)所示的仿真结果, 分别激发4阶和5阶的SPP涡旋光. 图3(d)图3(f)则是在图3(a)图3(c)的基础上改变了螺距与SPP波长的绝对值倍数m, 然后得到的是1阶的SPP涡旋光. 经过对比可以看出, 当内外两层螺线之间的距离$ d = {\lambda _{\rm SPP}}/2 $时仿真结果与理论结果也符合得很好.

    • 研究了一种可以用来激发SPP涡旋光的双层阿基米德螺线分布的超表面结构. 理论分析与推导后的方程表明, 内外两层螺线之间的距离d的取值不同会极大地影响所得到的SPP涡旋光的表达式. 理论上可以通过调节入射光的手性σ、内外两层螺线之间的距离d、纳米孔阵列的旋转变化速度因子n、螺线的段数q以及螺距与SPP长的绝对值倍数m这五个参数来实现对产生的SPP涡旋光的操控. 随后, 利用FDTD仿真软件对该超表面结构进行了模拟, 仿真结果与理论结果完全符合, 证明了使用这种螺线分布的超表面结构激发SPP涡旋光的可行性. 这样可以通过精确控制与组合相关参数十分简单地产生任意拓扑荷数的SPP涡旋光, 由于可调控的参数多, 自由度大, 可以根据需求灵活地进行设计, 因而在微纳级别的光学芯片方面具备很大的应用潜力.

参考文献 (26)

目录

    /

    返回文章
    返回