搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微米级全光磁全息结构的涡旋光生成实验研究

秦雪云 吴越 朱榕琪 朱竹青

引用本文:
Citation:

基于微米级全光磁全息结构的涡旋光生成实验研究

秦雪云, 吴越, 朱榕琪, 朱竹青
cstr: 32037.14.aps.74.20250649

Experimental study on vortex beam generation based on micron-scale all-optical magnetic holographic structures

QIN Xueyun, WU Yue, ZHU Rongqi, ZHU Zhuqing
cstr: 32037.14.aps.74.20250649
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 涡旋光因其携带轨道角动量(OAM), 在光通信、光学操控及精密测量等领域具有重要的应用价值. 现有的涡旋光生成方法(如螺旋相位板、空间光调制器和超表面)虽已广泛应用, 但仍存在结构固化、动态调控困难以及集成性不足等问题, 难以满足可重构、可编程涡旋光生成系统的应用需求. 为此, 本文提出一种基于全光磁全息的新型涡旋光生成方案. 该方法利用单脉冲飞秒激光将预先设计的叉形光栅全息图以打点方式写入微米级GdFeCo磁性材料表面, 并通过磁光法拉第衍射效应再现涡旋光. 实验结果表明, 通过一维叉形光栅可实现不同拓扑荷(l = ±2, ±5, ±8)的涡旋光生成, 且涡旋光半径与拓扑荷呈正相关; 二维叉形光栅则可生成多拓扑荷分布的3×3涡旋光阵列, 实现涡旋光的空间可控调制. 该方案具备可擦写重构、重复使用及高稳定性等优势, 为微/纳尺度下涡旋光的灵活调控与集成应用提供了新思路.
    In recent years, vortex beams carrying orbital angular momentum (OAM) have been widely applied to optical communications, optical manipulation, and precision measurement. However, traditional generation methods such as spiral phase plates, spatial light modulators, and metasurfaces, encounter several challenges, including structural rigidity, limited dynamic tunability, and inadequate integration capabilities. These limitations hinder the realization of reconfigurable and programmable vortex beam generation systems. In order to solve these problems, a novel vortex beam generation method based on all-optical magnetic holography is presented in this paper. In this technique, a single-pulse femtosecond laser is used in a dotted writing mode to engrave a pre-designed fork-shaped grating hologram onto the surface of a micron-scale magnetic material, GdFeCo. Under subsequent illumination with a plane wave, the vortex beam is reconstructed via the magneto-optical Faraday diffraction effect. Experimental results show that one-dimensional fork-shaped gratings can flexibly generate vortex beams with different topological charges (l = ±2, ±5, ±8), where the beam radius increases with the augment of topological charges. Furthermore, a two-dimensional fork-shaped grating, formed by superimposing horizontal and vertical one-dimensional gratings, can produce 3 × 3 vortex beam arrays with various topological charge distributions, enabling the spatial modulation of OAM. This method offers advantages such as reusability, long-term stability, and a compact structure, thus providing a programmable and reconfigurable platform for generating micro-structured vortex beams. Unlike traditional static optical elements, this approach enables dynamic, high-resolution, and easy-to-integrate solutions, and shows great application potential in OAM-based multi-channel optical communication, multi-particle manipulation, and parallel laser processing.
      通信作者: 朱竹青, zhuqingzhu@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174196)和中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室(批准号: SKLAO2022001A17)资助的课题.
      Corresponding author: ZHU Zhuqing, zhuqingzhu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174196) and the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. SKLAO2022001A17).
    [1]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [2]

    Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002

    [3]

    Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869Google Scholar

    [4]

    Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351Google Scholar

    [5]

    Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524Google Scholar

    [6]

    Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213Google Scholar

    [7]

    Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881Google Scholar

    [8]

    Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183Google Scholar

    [9]

    Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487Google Scholar

    [10]

    Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213Google Scholar

    [11]

    Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05Google Scholar

    [12]

    张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201Google Scholar

    Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201Google Scholar

    [13]

    Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994Google Scholar

    [14]

    Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167Google Scholar

    [15]

    Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417Google Scholar

    [16]

    Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220Google Scholar

    [17]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar

    [18]

    Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989Google Scholar

    [19]

    Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286Google Scholar

    [20]

    Mezrich R 1970 IEEE Trans. Magn. 6 537Google Scholar

    [21]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [22]

    Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101Google Scholar

    [23]

    Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577Google Scholar

    [24]

    朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150

    Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150

  • 图 1  全光磁全息生成涡旋光的原理图 (a1) 偏光显微镜下的全息图; (a2) Gd27Fe63.87Co9.13材料的多层膜结构; (b1) 涡旋光实验光强图

    Fig. 1.  Principle of vortex beam generation based on all-optical magnetic holography: (a1) Hologram observed under a polarizing optical microscope; (a2) multilayer film structure of the Gd27Fe63.87Co9.13 material; (b1) experimental intensity distribution of the reconstructed vortex beam.

    图 2  二元磁光栅的法拉第效应 (a) 磁性材料不同位置的磁化方向; (b) 入射光经过磁性材料后的电场分布

    Fig. 2.  The Faraday effect of binary magnetic gratings: (a) The magnetization directions of magnetic materials at different positions; (b) the electric field distribution of incident light after passing through magnetic materials.

    图 3  实验装置示意图, H1—H2为半波片; P1—P4为偏振片; SH为光开关; A为光阑; M1—M2为反射镜; Q为1/4波片; D为二向色镜; L为透镜; O为显微物镜; CCD为工业相机

    Fig. 3.  Schematic of experimental setup, H1–H2 represent half-wave plates; P1–P4 represent polarizers; SH represents optical shutter; A represents aperture; M1–M2 represents mirrors; Q represents quarter-wave plate; D represents dichroic mirror; L represents lens; O represents objective lens; CCD represents industrial camera.

    图 4  反转尺寸、反转概率与激光能量密度之间的关系 (a) 不同激光能量密度下的反转尺寸; (b) 反转概率与激光能量密度之间的拟合曲线

    Fig. 4.  Relationship between reversal size, reversal probability, and laser energy density: (a) Reversal sizes under different laser energy densities; (b) fitted curve of reversal probability versus laser energy density.

    图 5  涡旋光的生成 (a1)—(a3) 一维叉形光栅模拟图; (b1)—(b3) 涡旋光模拟光强图; (c1)—(c3) 偏光显微镜下的一维叉形光栅实验图; (d1)—(d3) 涡旋光实验光强图

    Fig. 5.  Generation of vortex beams: (a1)–(a3) Simulated binary fork grating patterns; (b1)–(b3) simulated intensity distributions of vortex beams; (c1)–(c3) experimental images of one-dimensional fork gratings observed under a polarizing microscope; (d1)–(d3) experimental intensity distributions of the reconstructed vortex beams.

    图 6  涡旋光阵列的生成 (a1), (a2) 二维叉形光栅模拟图; (b1), (b2) 涡旋光阵列模拟光强图; (c1), (c2) 偏光显微镜下的二维叉形光栅实验图; (d1), (d2) 涡旋光阵列实验光强图

    Fig. 6.  Generation of vortex beam arrays: (a1), (a2) Simulated two-dimensional fork grating patterns; (b1), (b2) simulated intensity distributions of vortex beam arrays; (c1), (c2) experimental images of two-dimensional fork gratings observed under a polarizing microscope; (d1), (d2) experimental intensity distributions of the reconstructed vortex beam arrays.

  • [1]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [2]

    Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002

    [3]

    Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869Google Scholar

    [4]

    Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351Google Scholar

    [5]

    Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524Google Scholar

    [6]

    Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213Google Scholar

    [7]

    Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881Google Scholar

    [8]

    Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183Google Scholar

    [9]

    Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487Google Scholar

    [10]

    Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213Google Scholar

    [11]

    Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05Google Scholar

    [12]

    张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201Google Scholar

    Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201Google Scholar

    [13]

    Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994Google Scholar

    [14]

    Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167Google Scholar

    [15]

    Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417Google Scholar

    [16]

    Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220Google Scholar

    [17]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205Google Scholar

    [18]

    Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989Google Scholar

    [19]

    Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286Google Scholar

    [20]

    Mezrich R 1970 IEEE Trans. Magn. 6 537Google Scholar

    [21]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [22]

    Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101Google Scholar

    [23]

    Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577Google Scholar

    [24]

    朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150

    Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150

  • [1] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移. 物理学报, 2025, 74(4): 044203. doi: 10.7498/aps.74.20241565
    [2] 方国全, 林瀚, 王思越, 彭璞, 方哲宇. 轨道角动量复用三维加密全息图. 物理学报, 2025, 74(6): 064205. doi: 10.7498/aps.74.20241444
    [3] 高雨洁, 李晋红, 王静, 刘晋宏, 尹晓金. 柱矢量涡旋光束在自由空间中传输时角动量的全矢量特性. 物理学报, 2025, 74(5): 059202. doi: 10.7498/aps.74.20241344
    [4] 贾谊成, 张福荣, 张景风, 孔令军, 张向东. 三维空间轨道角动量全息. 物理学报, 2024, 73(9): 094202. doi: 10.7498/aps.73.20231822
    [5] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [6] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [7] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [8] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [9] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [10] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [11] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [12] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [13] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [14] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 叶芳伟, 李永平. 用叉形光栅实现光子轨道角动量的叠加态的测量. 物理学报, 2003, 52(2): 328-331. doi: 10.7498/aps.52.328
计量
  • 文章访问数:  379
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-06-21
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-09-05

/

返回文章
返回