-
涡旋光因其携带轨道角动量(OAM), 在光通信、光学操控及精密测量等领域具有重要的应用价值. 现有的涡旋光生成方法(如螺旋相位板、空间光调制器和超表面)虽已广泛应用, 但仍存在结构固化、动态调控困难以及集成性不足等问题, 难以满足可重构、可编程涡旋光生成系统的应用需求. 为此, 本文提出一种基于全光磁全息的新型涡旋光生成方案. 该方法利用单脉冲飞秒激光将预先设计的叉形光栅全息图以打点方式写入微米级GdFeCo磁性材料表面, 并通过磁光法拉第衍射效应再现涡旋光. 实验结果表明, 通过一维叉形光栅可实现不同拓扑荷(l = ±2, ±5, ±8)的涡旋光生成, 且涡旋光半径与拓扑荷呈正相关; 二维叉形光栅则可生成多拓扑荷分布的3×3涡旋光阵列, 实现涡旋光的空间可控调制. 该方案具备可擦写重构、重复使用及高稳定性等优势, 为微/纳尺度下涡旋光的灵活调控与集成应用提供了新思路.In recent years, vortex beams carrying orbital angular momentum (OAM) have been widely applied to optical communications, optical manipulation, and precision measurement. However, traditional generation methods such as spiral phase plates, spatial light modulators, and metasurfaces, encounter several challenges, including structural rigidity, limited dynamic tunability, and inadequate integration capabilities. These limitations hinder the realization of reconfigurable and programmable vortex beam generation systems. In order to solve these problems, a novel vortex beam generation method based on all-optical magnetic holography is presented in this paper. In this technique, a single-pulse femtosecond laser is used in a dotted writing mode to engrave a pre-designed fork-shaped grating hologram onto the surface of a micron-scale magnetic material, GdFeCo. Under subsequent illumination with a plane wave, the vortex beam is reconstructed via the magneto-optical Faraday diffraction effect. Experimental results show that one-dimensional fork-shaped gratings can flexibly generate vortex beams with different topological charges (l = ±2, ±5, ±8), where the beam radius increases with the augment of topological charges. Furthermore, a two-dimensional fork-shaped grating, formed by superimposing horizontal and vertical one-dimensional gratings, can produce 3 × 3 vortex beam arrays with various topological charge distributions, enabling the spatial modulation of OAM. This method offers advantages such as reusability, long-term stability, and a compact structure, thus providing a programmable and reconfigurable platform for generating micro-structured vortex beams. Unlike traditional static optical elements, this approach enables dynamic, high-resolution, and easy-to-integrate solutions, and shows great application potential in OAM-based multi-channel optical communication, multi-particle manipulation, and parallel laser processing.
[1] Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645
Google Scholar
[2] Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002
[3] Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869
Google Scholar
[4] Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351
Google Scholar
[5] Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524
Google Scholar
[6] Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213
Google Scholar
[7] Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881
Google Scholar
[8] Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183
Google Scholar
[9] Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487
Google Scholar
[10] Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213
Google Scholar
[11] Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05
Google Scholar
[12] 张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201
Google Scholar
Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201
Google Scholar
[13] Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994
Google Scholar
[14] Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167
Google Scholar
[15] Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417
Google Scholar
[16] Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220
Google Scholar
[17] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205
Google Scholar
[18] Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989
Google Scholar
[19] Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286
Google Scholar
[20] Mezrich R 1970 IEEE Trans. Magn. 6 537
Google Scholar
[21] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[22] Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101
Google Scholar
[23] Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577
Google Scholar
[24] 朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150
Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150
-
图 1 全光磁全息生成涡旋光的原理图 (a1) 偏光显微镜下的全息图; (a2) Gd27Fe63.87Co9.13材料的多层膜结构; (b1) 涡旋光实验光强图
Fig. 1. Principle of vortex beam generation based on all-optical magnetic holography: (a1) Hologram observed under a polarizing optical microscope; (a2) multilayer film structure of the Gd27Fe63.87Co9.13 material; (b1) experimental intensity distribution of the reconstructed vortex beam.
图 3 实验装置示意图, H1—H2为半波片; P1—P4为偏振片; SH为光开关; A为光阑; M1—M2为反射镜; Q为1/4波片; D为二向色镜; L为透镜; O为显微物镜; CCD为工业相机
Fig. 3. Schematic of experimental setup, H1–H2 represent half-wave plates; P1–P4 represent polarizers; SH represents optical shutter; A represents aperture; M1–M2 represents mirrors; Q represents quarter-wave plate; D represents dichroic mirror; L represents lens; O represents objective lens; CCD represents industrial camera.
图 5 涡旋光的生成 (a1)—(a3) 一维叉形光栅模拟图; (b1)—(b3) 涡旋光模拟光强图; (c1)—(c3) 偏光显微镜下的一维叉形光栅实验图; (d1)—(d3) 涡旋光实验光强图
Fig. 5. Generation of vortex beams: (a1)–(a3) Simulated binary fork grating patterns; (b1)–(b3) simulated intensity distributions of vortex beams; (c1)–(c3) experimental images of one-dimensional fork gratings observed under a polarizing microscope; (d1)–(d3) experimental intensity distributions of the reconstructed vortex beams.
图 6 涡旋光阵列的生成 (a1), (a2) 二维叉形光栅模拟图; (b1), (b2) 涡旋光阵列模拟光强图; (c1), (c2) 偏光显微镜下的二维叉形光栅实验图; (d1), (d2) 涡旋光阵列实验光强图
Fig. 6. Generation of vortex beam arrays: (a1), (a2) Simulated two-dimensional fork grating patterns; (b1), (b2) simulated intensity distributions of vortex beam arrays; (c1), (c2) experimental images of two-dimensional fork gratings observed under a polarizing microscope; (d1), (d2) experimental intensity distributions of the reconstructed vortex beam arrays.
-
[1] Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645
Google Scholar
[2] Yan W X, Chen Z Z, Long X, Gao Y, Yuan Z, Ren Z C, Wang X L, Ding J P, Wang H T 2024 Adv. Photonics 6 036002
[3] Shi Z J, Wan Z S, Zhan Z Y, Liu K Y, Liu Q, Fu X 2023 Nat. Commun. 14 1869
Google Scholar
[4] Zhu L H, Zhang X H, Rui G H, He J, Gu B, Zhan Q W 2023 Nanophotonics 12 4351
Google Scholar
[5] Zhu L H, Tai Y P, Li H H, Hu H J, Li X Z, Cai Y J, Shen Y J 2023 Photonics Res. 11 1524
Google Scholar
[6] Peng L, Yao J, Bai Y H, Sun Y F, Zeng J C, Ren Y X, Xie J X, Hu Z Y, Zhang Q, Yang Y J 2024 ACS Photonics 11 1213
Google Scholar
[7] Gao W Y, Zhou Y, Li X, Zhang Y A, Zhang Q, Li M M, Yu X H, Yan S H, Xu X H, Yao B L 2024 Photonics Res. 12 2881
Google Scholar
[8] Fang L, Padgett M J, Wang J 2017 Laser Photonics Rev. 11 1700183
Google Scholar
[9] Zhu L H, Tang M M, Li H H, Tai Y P, Li X Z 2021 Nanophotonics 10 2487
Google Scholar
[10] Qin X Y, Zhang H, Tang M M, Zhou Y J, Tai Y P, Li X Z 2024 Opt. Lett. 49 2213
Google Scholar
[11] Wang J, Li K, Quan Z Q 2024 Photonics Insights 3 R05
Google Scholar
[12] 张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙 2025 物理学报 74 064201
Google Scholar
Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201
Google Scholar
[13] Liu M Z, Lin P C, Huo P C, Qi H C, Jin R C, Zhang H, Ren Y Z, Song M W, Lu Y Q, Xu T 2025 Nat. Commu. 16 3994
Google Scholar
[14] Zhou S Y, Li L, Gao L L, Zhou Z Y, Yang J Y, Zhang S R, Wang T L, Gao C Q, Fu S Y 2025 Light Sci. Appl. 14 167
Google Scholar
[15] Rottmayer R E, Batra S, Buechel D, Challener W A, Hohlfeld J, Kubota Y, Li L, Lu B, Mihalcea C, Mountfield K, Pelhos K, Peng C, Rausch T, Seigler M A, Weller D, Yang X M 2006 IEEE Trans. Magn. 42 2417
Google Scholar
[16] Challener W A, Peng C B, Itagi A V, Karns D, Peng W, Peng Y G, Yang X M, Zhu X B, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A, Gage E C 2009 Nat. Photonics 3 220
Google Scholar
[17] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A V 2011 Nature 472 205
Google Scholar
[18] Makowski M, Kolodziejczyk M, Bomba J, Frej A, Sypek M, Bolek J, Starobrat J, Tsukamoto A, Davies C S, Kirilyuk A, Stupakiewicz A 2022 J. Magn. Magn. Mater. 548 168989
Google Scholar
[19] Makowski M, Bomba J, Frej A, Kolodziejczyk M, Sypek M, Shimobaba T, Ito T, Kirilyuk A, Stupakiewicz A 2022 Nat. Commun. 13 7286
Google Scholar
[20] Mezrich R 1970 IEEE Trans. Magn. 6 537
Google Scholar
[21] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[22] Qin X Y, Zhu L H, Hu H J, Tai Y P, Li X Z 2023 J. Appl. Phys. 133 013101
Google Scholar
[23] Tai Y P, Fan H H, Ma X, Wei W J, Zhang H, Tang M M, Li X Z 2024 Opt. Express 32 10577
Google Scholar
[24] 朱凌峰, 王静, 郭苗军, 李晋红 2023 激光杂志 44 150
Zhu L F, Wang J, Guo M J, Li J H 2023 Laser J. 44 150
计量
- 文章访问数: 379
- PDF下载量: 14
- 被引次数: 0