-
无磁光学非互易在量子通信、量子网络和光信息处理等方面具有重要的应用。本文通过简并二能级热原子系统,在单向泵浦场作用下,考虑热原子的多普勒效应,实现双路简并四波混频信号的非互易放大。在此基础上,再引入一束对向共线传播的泵浦场,形成了空间复用的多重四波混频过程,从而实现了双通道四波混频信号的互易放大。进一步地,利用多组涡旋相位片分别对信号光和泵浦光加载螺旋相位,产生携带光学轨道角动量的高阶拉盖尔-高斯涡旋光束,并参与到四波混频过程中,实现了泵浦光的轨道角动量向增益光场的转移;同时利用马赫-曾德尔干涉仪,进一步分析了各路四波混频信号场在非互易-互易放大转换下,光学轨道角动量的守恒特性。该结论为实现基于复杂结构光的光学非互易器件的应用研究提供了重要的参考。Magnet-free optical nonreciprocity has significant applications in quantum communication, quantum networks, and optical information processing. In this research, considering a degenerate two-level thermal atomic system with the Doppler effect of thermal atoms, the nonreciprocal amplification (NRA) of dual-path degenerate four-wave mixing (FWM) signals is achieved under the action of a co-propagating pumping field. On this basis, spatially multiplexed multiple FWM processes are formed by introducing another counter-propagating pumping field, thereby the reciprocal amplification (RA) of the dual-channel FWM signals is realized. Furthermore, by using multiple sets of spiral phase plates to load spiral phases on the signal light and the pumping light respectively, higher-order Laguerre-Gaussian vortex beams carrying different optical orbital angular momentum (OAM) are generated and participated in the FWM process, which achieve the transfer of the OAM of the pumping light to the amplified FWM fields. Simultaneously, using the Mach-Zehnder interferometer, the conservation characteristics of the OAM of each FWM signal in the NRA-RA conversion are further analyzed. Furthermore, experimental results have demonstrated that in the multiple FWM process induced by a pair of counter-propagating pump fields, the OAM of the amplified FWM signal in each channel varies with the change of that of the pump field. However, the overall process maintains the OAM conservation. The study provides a feasible solution for expanding channel capacity using OAM based on NRA-RA system, and has potential application prospects in achieving high-capacity optical communication and multi-channel signal processing.
-
Keywords:
- Optical nonreciprocity /
- Four-wave mixing /
- Optical orbital angular momentum /
- Vortex beam
-
[1] Dimitrios L. Sounas, Andrea Alù 2017 Nat. Photonics 11 774
[2] Yang H, Zhang S, Niu Y, Gong S 2022 Opt. Commun. 515 128195
[3] Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[4] Yu Z F, Fan S H 2009 Nat. Photonics3 91
[5] Aplet L J, Carson J W 1964Appl. Opt. A O 3 544
[6] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758
[7] Wang J L, Huang F L G, Chen H M 2021 Acta Opt. Sin. 41 0713001 (in Chinese) [汪静丽, 皇甫利国, 陈鹤鸣 2021光学学报 41 0713001]
[8] Poo Y, Wu R xin, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903
[9] Zhu L, Fan S 2016 Phys. Rev. Lett. 117 134303
[10] Muñoz de las Heras A, Carusotto I 2022Phys. Rev. A, 106 063523
[11] Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics. 15 828
[12] Yu Y, Chen Y H, Hu H, Xue W Q, Yvind K, Mork J 2014 Laser & Photonics Reviews 9 241
[13] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447
[14] Sounas D L, Caloz C, Alù A 2013 Nat. Commun. 4 2407
[15] Zhou H, Zhou K F, Hu W, Guo Q, Lan S, Lin X S, Gopal A V 2006 Appl. Phys. Lett. 99, 123111
[16] Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H 2020 Phys. Rev. Res. 2 033517
[17] Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[18] Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577
[19] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833
[20] Sounas D L, Alù A 2017 Nat. Photonics 11 774
[21] Wang J, Herrmann J F, Witmer J D, Safavi-Naeini A H, Fan S 2021 Phys. Rev. Lett. 126 193901
[22] Yu Z, Fan S 2009 Appl. Phys. Lett. 94, 171116
[23] Hafezi M, Rabl P 2012 Opt. Express20 7672
[24] Xu H, Jiang L Y, Clerk A A, Harris G E 2019 Nature 568 65
[25] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
[26] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[27] Dong M X, Xia K Y, Zhang W H, Yu C Y, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv.7 8924
[28] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744
[29] Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202(in Chinese)[李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东2022 物理学报 71 184202]
[30] Li R G, Zheng Y T, Xu Q Y, Pei X S, Geng Y, Yan D, Yang H 2024 Acta Phys. Sin. 73 126401 (in Chinese)[李观荣,郑怡婷,徐琼怡,裴笑山,耿玥, 严冬,杨红 2024 物理学报 73 126401]
[31] Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys.Rev. Lett. 123 033902
[32] Lv S, Jing J 2017 Phys. Rev. A96 043873
[33] Liu S, Lou Y, Jing J 2019 Phys. Rev. Lett. 123 113602
[34] Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin.69 090303(in Chinese)[余胜,刘焕章,刘胜帅,荆杰泰 2020 物理学报69 090303]
[35] Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, You L 2020 Phys. Rev. Lett. 125 123901
[36] Lassen M, Delaubert V, Harb C C, Treps N, Lam P K, Bachor H A 2006 JEOS - Rapid Pubs 1 06003
[37] Lassen M, Leuchs G, Andersen U L 2009Phys. Rev. Lett. 102 163602
[38] Wang X, Jing J 2022 Phys. Rev. A18 024057
[39] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234
[40] Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527
[41] Arita Y, Chen M, Wright E M, Dholakia K 2017 J. Opt. Soc. Am. B, JOSAB 34 C14
[42] Liang Y, Lei M, Yan S, Li M, Cai Y, Wang Z, Yu X, Yao B 2018 Appl. Opt.. 57 79
[43] Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett.123 070506
[44] Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605
[45] Zhou H T, Guo M J, Wang D, Gao J R, Zhang J X, Zhu S Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225503
[46] Grischokowsky D, 1970 Phys. Rev. Lett. 24 1663
计量
- 文章访问数: 166
- PDF下载量: 7
- 被引次数: 0