搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非互易-互易放大转换下光学轨道角动量的转移

李若楠 薛晶晶 宋丹 李鑫 王丹 杨保东 周海涛

引用本文:
Citation:

非互易-互易放大转换下光学轨道角动量的转移

李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛

Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion

Li Ruo-Nan, Xue Jing-Jing, Song Dan, Li Xin, Wang Dan, Yang Bao-Dong, Zhou Hai-Tao
PDF
导出引用
  • 无磁光学非互易在量子通信、量子网络和光信息处理等方面具有重要的应用。本文通过简并二能级热原子系统,在单向泵浦场作用下,考虑热原子的多普勒效应,实现双路简并四波混频信号的非互易放大。在此基础上,再引入一束对向共线传播的泵浦场,形成了空间复用的多重四波混频过程,从而实现了双通道四波混频信号的互易放大。进一步地,利用多组涡旋相位片分别对信号光和泵浦光加载螺旋相位,产生携带光学轨道角动量的高阶拉盖尔-高斯涡旋光束,并参与到四波混频过程中,实现了泵浦光的轨道角动量向增益光场的转移;同时利用马赫-曾德尔干涉仪,进一步分析了各路四波混频信号场在非互易-互易放大转换下,光学轨道角动量的守恒特性。该结论为实现基于复杂结构光的光学非互易器件的应用研究提供了重要的参考。
    Magnet-free optical nonreciprocity has significant applications in quantum communication, quantum networks, and optical information processing. In this research, considering a degenerate two-level thermal atomic system with the Doppler effect of thermal atoms, the nonreciprocal amplification (NRA) of dual-path degenerate four-wave mixing (FWM) signals is achieved under the action of a co-propagating pumping field. On this basis, spatially multiplexed multiple FWM processes are formed by introducing another counter-propagating pumping field, thereby the reciprocal amplification (RA) of the dual-channel FWM signals is realized. Furthermore, by using multiple sets of spiral phase plates to load spiral phases on the signal light and the pumping light respectively, higher-order Laguerre-Gaussian vortex beams carrying different optical orbital angular momentum (OAM) are generated and participated in the FWM process, which achieve the transfer of the OAM of the pumping light to the amplified FWM fields. Simultaneously, using the Mach-Zehnder interferometer, the conservation characteristics of the OAM of each FWM signal in the NRA-RA conversion are further analyzed. Furthermore, experimental results have demonstrated that in the multiple FWM process induced by a pair of counter-propagating pump fields, the OAM of the amplified FWM signal in each channel varies with the change of that of the pump field. However, the overall process maintains the OAM conservation. The study provides a feasible solution for expanding channel capacity using OAM based on NRA-RA system, and has potential application prospects in achieving high-capacity optical communication and multi-channel signal processing.
  • [1]

    Dimitrios L. Sounas, Andrea Alù 2017 Nat. Photonics 11 774

    [2]

    Yang H, Zhang S, Niu Y, Gong S 2022 Opt. Commun. 515 128195

    [3]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [4]

    Yu Z F, Fan S H 2009 Nat. Photonics3 91

    [5]

    Aplet L J, Carson J W 1964Appl. Opt. A O 3 544

    [6]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A 2011 Nat. Photonics 5 758

    [7]

    Wang J L, Huang F L G, Chen H M 2021 Acta Opt. Sin. 41 0713001 (in Chinese) [汪静丽, 皇甫利国, 陈鹤鸣 2021光学学报 41 0713001]

    [8]

    Poo Y, Wu R xin, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [9]

    Zhu L, Fan S 2016 Phys. Rev. Lett. 117 134303

    [10]

    Muñoz de las Heras A, Carusotto I 2022Phys. Rev. A, 106 063523

    [11]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics. 15 828

    [12]

    Yu Y, Chen Y H, Hu H, Xue W Q, Yvind K, Mork J 2014 Laser & Photonics Reviews 9 241

    [13]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447

    [14]

    Sounas D L, Caloz C, Alù A 2013 Nat. Commun. 4 2407

    [15]

    Zhou H, Zhou K F, Hu W, Guo Q, Lan S, Lin X S, Gopal A V 2006 Appl. Phys. Lett. 99, 123111

    [16]

    Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H 2020 Phys. Rev. Res. 2 033517

    [17]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036

    [18]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577

    [19]

    Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, Xiao M 2019 Phys. Rev. A 99 043833

    [20]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774

    [21]

    Wang J, Herrmann J F, Witmer J D, Safavi-Naeini A H, Fan S 2021 Phys. Rev. Lett. 126 193901

    [22]

    Yu Z, Fan S 2009 Appl. Phys. Lett. 94, 171116

    [23]

    Hafezi M, Rabl P 2012 Opt. Express20 7672

    [24]

    Xu H, Jiang L Y, Clerk A A, Harris G E 2019 Nature 568 65

    [25]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [26]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901

    [27]

    Dong M X, Xia K Y, Zhang W H, Yu C Y, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, Nori F 2021 Sci. Adv.7 8924

    [28]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744

    [29]

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202(in Chinese)[李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东2022 物理学报 71 184202]

    [30]

    Li R G, Zheng Y T, Xu Q Y, Pei X S, Geng Y, Yan D, Yang H 2024 Acta Phys. Sin. 73 126401 (in Chinese)[李观荣,郑怡婷,徐琼怡,裴笑山,耿玥, 严冬,杨红 2024 物理学报 73 126401]

    [31]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys.Rev. Lett. 123 033902

    [32]

    Lv S, Jing J 2017 Phys. Rev. A96 043873

    [33]

    Liu S, Lou Y, Jing J 2019 Phys. Rev. Lett. 123 113602

    [34]

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin.69 090303(in Chinese)[余胜,刘焕章,刘胜帅,荆杰泰 2020 物理学报69 090303]

    [35]

    Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, You L 2020 Phys. Rev. Lett. 125 123901

    [36]

    Lassen M, Delaubert V, Harb C C, Treps N, Lam P K, Bachor H A 2006 JEOS - Rapid Pubs 1 06003

    [37]

    Lassen M, Leuchs G, Andersen U L 2009Phys. Rev. Lett. 102 163602

    [38]

    Wang X, Jing J 2022 Phys. Rev. A18 024057

    [39]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234

    [40]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527

    [41]

    Arita Y, Chen M, Wright E M, Dholakia K 2017 J. Opt. Soc. Am. B, JOSAB 34 C14

    [42]

    Liang Y, Lei M, Yan S, Li M, Cai Y, Wang Z, Yu X, Yao B 2018 Appl. Opt.. 57 79

    [43]

    Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett.123 070506

    [44]

    Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605

    [45]

    Zhou H T, Guo M J, Wang D, Gao J R, Zhang J X, Zhu S Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225503

    [46]

    Grischokowsky D, 1970 Phys. Rev. Lett. 24 1663

  • [1] 张慧玲, 谢中柱, 郝佳瑞, 房勇. 室温下铯原子体系光学非互易调控实验研究. 物理学报, doi: 10.7498/aps.74.20241463
    [2] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, doi: 10.7498/aps.73.20231212
    [3] 曹雷明, 杜金鉴, 张凯, 刘胜帅, 荆杰泰. 基于四波混频过程产生介于锥形探针光和锥形共轭光之间的多模量子关联. 物理学报, doi: 10.7498/aps.71.20220081
    [4] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.71.20211324
    [5] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, doi: 10.7498/aps.71.20220506
    [6] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.70.20211324
    [7] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, doi: 10.7498/aps.69.20191745
    [8] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, doi: 10.7498/aps.67.20172638
    [9] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应. 物理学报, doi: 10.7498/aps.65.154206
    [10] 惠战强, 张建国. 基于光子晶体光纤中双抽运四波混频效应的非归零到归零码型转换实验研究. 物理学报, doi: 10.7498/aps.62.084209
    [11] 惠战强, 张建国. 基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换. 物理学报, doi: 10.7498/aps.61.014217
    [12] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, doi: 10.7498/aps.61.114214
    [13] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, doi: 10.7498/aps.61.124205
    [14] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, doi: 10.7498/aps.59.3986
    [15] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, doi: 10.7498/aps.58.1785
    [16] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, doi: 10.7498/aps.57.4991
    [17] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, doi: 10.7498/aps.55.221
    [18] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, doi: 10.7498/aps.54.149
    [19] 孙 江, 姜 谦, 米 辛, 俞祖和, 傅盘铭. 利用场关联效应抑制瑞利型非简并四波混频的热背底. 物理学报, doi: 10.7498/aps.53.450
    [20] 邵钟浩. 具有非均匀零色散波长光纤中的四波混频. 物理学报, doi: 10.7498/aps.50.73
计量
  • 文章访问数:  166
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回