搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用双非简并四波混频理论研究原子的碰撞效应

孙江 常晓阳 张素恒 熊志强

引用本文:
Citation:

应用双非简并四波混频理论研究原子的碰撞效应

孙江, 常晓阳, 张素恒, 熊志强

Theoretical study of atom collision by two-nondegenerate four-wave mixing

Sun Jiang, Chang Xiao-Yang, Zhang Su-Heng, Xiong Zhi-Qiang
PDF
导出引用
  • 在已有实验的基础上,提出了由双光子共振非简并四波混频和碰撞再构非简并四波混频组成用于研究原子碰撞效应的双非简并四波混频理论. 分析了缓冲气压、温度、共振失谐和碰撞展宽系数对双非简并四波混频谱线的影响. 在由基态、中间态和激发态组成的级联三能级系统中,双非简并四波混频可同时研究碰撞引起的激发态谱线展宽和碰撞引起的中间态能级再分布现象. 与测量纵向驰豫碰撞展宽的传统实验方法不同,本文方法是一种纯光学的相干测量技术,可以同时测量激发态与基态间的横向驰豫20 和中间态与基态间的横向驰豫21 的碰撞展宽.
    In recent years, the collisional redistribution of radiation and collision-induced broadening of Rydberg atomic spectral lines by buffer gas perturbation have aroused the renewed interest. Rydberg atoms having a large dipole moment and long lifetime can interact with each other coherently for relatively long time, which makes them a potential candidate for quantum information processing. Besides, collisional redistribution has an important potential application in laser cooling and trapping. Based on previous experimental data, in this paper, two-nondegenerate four-wave mixing (NFWM) for studying atom collision, composed of two-photon resonant NFWM and collisional redistribution NFWM, is reported. The spectrum variation of the two-NFWM affected by the pressure, temperature, detuning and collision-broadening rate coefficient is analyzed. The principle of two-NFWM involving three incident beams is explained as follows. Consider two-NFWM in a |0-|1-|2 cascade three-level system, where states between |0 and |1 and between |1 and |2 ightangle are coupled by resonant frequencies 1 and 2 , respectively. Beam 1 with frequency 1 propagates along the direction opposite to the direction of beam 2, beams 2 and 2' have the same frequency 2, and between their directions there exists a small angle. Assuming that 1 1 and 2 2 so that 1 drives the transition from |0 to |1 while 2 drives the transition from |1 to |2, the simultaneous interactions of atoms with beams 1 and 2 will induce atomic coherence between |0 and |2 through two-photon excitation. This coherence is probed by beam 2', and as a result a two-photon resonant NFWM signal of frequency 1 is generated in the direction almost opposite to the direction of beam 2'. To avoid strong absorption at the resonant frequency of transition from |0 to |1, here the wavelength of beam1 is detuned from the exact resonance. An atom population of level |1 caused by collisional redistribution can be induced when a certain buffer gas pressure is imposed. The collisional redistribution NFWM process also exists in this case. Beam 2 drives the transition from |1 to |2 to induce an atomic coherence which is probed by beam 2' for giving rise to an atomic population grating. A collisional redistribution NFWM signal propagating along the same direction as the two-photon resonant NFWM signal is generated when beam 1 is scattered by the grating. Much information about atomic collisions can be obtained by analyzing the two NFWM signals. In a cascade three-level system composed of ground state, intermediate state and Rydberg state, and the two-NFWM can be used to investigate not only the broadening and shifting of the Rydberg level but also the collisional redistribution of the intermediate state. Unlike other experiments studying the pressure dependence of the longitudinal relaxation rate of atom states, this technique is a purely optical coherent means, and can measure the transverse relaxation rate 20 between Rydberg state and ground state as well as the pressure dependence of the transverse relaxation rate 21 between Rydberg state and intermediate state.
      通信作者: 孙江, hdsunjiang@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:10804025,11204062)资助的课题.
      Corresponding author: Sun Jiang, hdsunjiang@163.com
    • Funds: Project support by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 10804025, 11204062),
    [1]

    Holtgrave J C, Wolf P J 2005 Phys. Rev. A 72 012711

    [2]

    Oreto P J, Jau Y Y, Post A B, Kuzma N N, Happer W 2004 Phys. Rev. A 69 042716

    [3]

    Sun B, Robicheaux F 2008 Phys. Rev. A 78 040701

    [4]

    Xin T, Dieter W, Stefan W 2011 Phys. Rev. A 83 023415

    [5]

    Chan Y C, Gelbwachs J A 1992 J. Phy. B: At. Mol. Opt. Phys. 25 3601

    [6]

    Vogl U, Martin W 2009 Nature 461 70

    [7]

    Ni S Y, Goetz W, Meijer H A J, Andersen N 1996 Z. Phys. D 38 303

    [8]

    Fu P M, Jiang Q, Mi X, Yu Z H 2002 Phys. Rev. Lett. 88 113902

    [9]

    Sun J, Jiang Q, Yu Z H, Mi X, Fu P M 2003 Opt. Commun. 223 187

    [10]

    Sun J, Zuo Z C, Mi X, Yu Z H, Jiang Q, Wang Y B, Wu L A, Fu P M 2004 Phys. Rev. A 70 053820

    [11]

    Sun J, Zuo Z C, Guo Q L, Wang Y L, Huai S F, Wang Y, Fu P M 2006 Acta Phys. Sin. 55 221 (in Chinese) [孙江, 左战春, 郭庆林, 王英龙, 怀素芳, 王颖, 傅盘铭 2006 物理学报 55 221]

    [12]

    Sun J, Sun J, Wang Y, Su H X 2012 Acta Phys. Sin. 61 114214 (in Chinese) [孙江, 孙娟, 王颖, 苏红新 2012 物理学报 61 114214]

    [13]

    Sun J, Sun J, Wang Y, Su H X 2012 Acta Phys. Sin. 61 124205 (in Chinese) [孙江, 刘鹏, 孙娟, 苏红新, 王颖 2012 物理学报 61 124205]

    [14]

    Sun J, Xiong Z Q, Sun J, Wang Y, Su H X 2012 Chin. Phys. B 21 064215

  • [1]

    Holtgrave J C, Wolf P J 2005 Phys. Rev. A 72 012711

    [2]

    Oreto P J, Jau Y Y, Post A B, Kuzma N N, Happer W 2004 Phys. Rev. A 69 042716

    [3]

    Sun B, Robicheaux F 2008 Phys. Rev. A 78 040701

    [4]

    Xin T, Dieter W, Stefan W 2011 Phys. Rev. A 83 023415

    [5]

    Chan Y C, Gelbwachs J A 1992 J. Phy. B: At. Mol. Opt. Phys. 25 3601

    [6]

    Vogl U, Martin W 2009 Nature 461 70

    [7]

    Ni S Y, Goetz W, Meijer H A J, Andersen N 1996 Z. Phys. D 38 303

    [8]

    Fu P M, Jiang Q, Mi X, Yu Z H 2002 Phys. Rev. Lett. 88 113902

    [9]

    Sun J, Jiang Q, Yu Z H, Mi X, Fu P M 2003 Opt. Commun. 223 187

    [10]

    Sun J, Zuo Z C, Mi X, Yu Z H, Jiang Q, Wang Y B, Wu L A, Fu P M 2004 Phys. Rev. A 70 053820

    [11]

    Sun J, Zuo Z C, Guo Q L, Wang Y L, Huai S F, Wang Y, Fu P M 2006 Acta Phys. Sin. 55 221 (in Chinese) [孙江, 左战春, 郭庆林, 王英龙, 怀素芳, 王颖, 傅盘铭 2006 物理学报 55 221]

    [12]

    Sun J, Sun J, Wang Y, Su H X 2012 Acta Phys. Sin. 61 114214 (in Chinese) [孙江, 孙娟, 王颖, 苏红新 2012 物理学报 61 114214]

    [13]

    Sun J, Sun J, Wang Y, Su H X 2012 Acta Phys. Sin. 61 124205 (in Chinese) [孙江, 刘鹏, 孙娟, 苏红新, 王颖 2012 物理学报 61 124205]

    [14]

    Sun J, Xiong Z Q, Sun J, Wang Y, Su H X 2012 Chin. Phys. B 21 064215

  • [1] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [3] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [4] 余胜, 刘焕章, 刘胜帅, 荆杰泰. 基于四波混频过程和线性分束器产生四组份纠缠. 物理学报, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [5] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [8] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [9] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析. 物理学报, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [10] 段斌, 吴泽清, 颜君, 李月明, 王建国. Ar+17和 Ar+16谱线的电子碰撞展宽. 物理学报, 2012, 61(4): 043204. doi: 10.7498/aps.61.043204
    [11] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [12] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [13] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [14] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [15] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法. 物理学报, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [18] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究. 物理学报, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [19] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
计量
  • 文章访问数:  5861
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-05-25
  • 刊出日期:  2016-08-05

/

返回文章
返回