搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-Sb-Se硫系玻璃拉曼增益特性研究

徐航 彭雪峰 戴世勋 徐栋 张培晴 许银生 李杏 聂秋华

引用本文:
Citation:

Ge-Sb-Se硫系玻璃拉曼增益特性研究

徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华

Raman gain of Ge-Sb-Se chalcogenide glass

Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua
PDF
导出引用
  • 本文制备了As2S3,As2Se3,Ge20Sb15Se65和Ge28Sb12Se60(mol%)四种硫系玻璃,测试了样品的折射率、红外透过及拉曼光谱. 利用自发拉曼散射理论,并结合测量的拉曼光谱数据,通过将硫系玻璃与石英玻璃样品的拉曼光谱作对比的方法计算了四种硫系玻璃的拉曼增益系数gR. 结果表明:As2S3玻璃在340 cm-1拉曼频移处gR为6010-13 m/W,As2Se3玻璃在230 cm-1拉曼频移处gR为22310-13 m/W,与文献报道结果基本相符. 与传统光纤拉曼增益系数实验测定法相比,此方法为探索新型高拉曼增益的硫系玻璃组成提供了极大的便捷. 应用此方法,计算得出Ge20Sb15Se65和Ge28Sb12Se60玻璃在200 cm-1拉曼频移处的gR值分别为21510-13m/W和11110-13m/W. 以上结果表明,不含有毒As元素的Ge-Sb-Se硫系玻璃其增益系数可达普通石英玻璃的200倍以上,为环境友好型拉曼光纤激光器基质材料提供了一种全新的可能.
    Previously reported chalcogenide glass Raman fiber lasers are made of glass compositions such as As2S3 or As2Se3. However, due to the high toxicity of the element arsenic, there is a potential risk in the glass preparation, fiber drawing, and testing processes. Therefore, we need to explore new environmentally friendly chalcogenide glasses that do not contain As for Raman fiber lasers. Studies have shown that the chalcogenide glasses of Ge-Sb-Se system have excellent infrared transmissions and good environmental friendliness, and thus they are excellent candidates for chalcogenide glass Raman fiber lasers. However, their Raman gains have not been reported. Then Raman gain coefficients can be obtained by experimental measurements and theoretical analyses. The experimental method requires expensive laboratory equipments, a complex optical path, and precision adjustments. Therefore, the design and preparation of new chalcogenide glass fiber with high Raman gain require the theoretical analysis of the Raman gain characteristics in a particular glass component glass. In this work, four chalcogenide glasses, respectively, with compositions of As2S3, As2Se3, Ge20Sb15Se65 and Ge28Sb12Se60 (mol%) are prepared. Refractive indices, infrared transmission and Raman spectra of these glass samples are measured. By using spontaneous Raman scattering theory combined with the measured Raman spectral data, the values of Raman gain coefficient gR of the chalcogenide glasses are calculated and calibrated by a quartz glass sample. Results show that the gR of As2S3 glass is 6010-13 m/W at 230 cm-1 Raman shift and the gR of As2Se3 glass is 22310-13 m/W at 340 cm-1 Raman shift, which are consistent with the experimental results reported in the literature. Compared with the traditional method, the present method used for calculating the fiber Raman gain coefficient provides great convenience for exploring new chalcogenide glasses with high Raman gain. By using this method, we obtain the gR values of Ge20Sb15Se65 and Ge28Sb12Se60glasses at 200 cm-1 Raman shift, which are 21510-13 m/W and 11110-13 m/W respectively. Meanwhile, we analyze the effects of composition and network structure of chalcogenide glass samples on the Raman gain coefficient and gain spectrum. There are two Raman peaks at 165 cm-1 and 200 cm-1 Raman shift, which are attributed to Ge-Ge bond vibration and Ge-Se bond vibration of common apex GeSe4/2 tetrahedral structure respectively. It could be found that the Raman gain coefficient of Ge20Sb15Se65 glass is bigger than that of Ge28Sb12Se60glass at 200 cm-1 Raman shift because of more Ge-Se bonds. By further optimizing the ratio of components of Ge-Sb-Se chalcogenide glass, we could obtain higher Raman gain coefficient at a particular frequency shift. These results show that the Raman gain coefficient of Ge-Sb-Se chalcogenide glass without poisonous element is up to over 200 times that of the ordinary quartz glass, which provides a new possibility for environment-friendly Raman fiber laser material.
      通信作者: 戴世勋, daishixun@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61435009)和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Dai Shi-Xun, daishixun@nbu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61435009) and the K. C. Wong Happy Foundation of Ningbo University, China.
    [1]

    Li J F, Chen Y, Chen M, Chen H, Jin X B, Yang Y, Dai Z, Liu Y 2011 Opt. Commun. 284 1278

    [2]

    Kohoutek T, Yan X, Shiosaka T W, Yannopoulos S N, Chrissanthopoulos A, Suzuki T, Ohishi Y 2011 J. Opt. Soc. Am. B. 28 2284

    [3]

    Thielen P A, Shaw L B, Pureza P C, Nguyen V Q, Sanghera J S, Aggarwal I D 2003 Opt. Lett. 28 1406

    [4]

    Jackson S D, Anzueto-Snchez G 2006 Appl . Phys. Lett. 88 221106

    [5]

    Fortin V, Bernier M, El-Amraoui M, Messaddeq Y, Vallee R 2013 IEEE Photon. J. 5 1502309

    [6]

    Ahmad R, Rochette M 2012 Opt. Lett. 37 4549

    [7]

    Li J F, Chen Y, Chen M, Chen H, Jin X B, Liu Y, Liu Y Z {2010 J. Light Scattering 22 220 (in Chinese) [李剑峰, 陈玉, 陈明, 陈昊, 敬雪碧, 刘永, 刘永智 2010 光散射学报 22 220]

    [8]

    Ahmad R, Rochette M 2012 Appl . Phys. Lett. 101 101110

    [9]

    Bernier M, Fortin V, El-Amraoui M, Messaddeq Y, Vallee R 2014 Opt. Lett. 39 2052

    [10]

    Liu Y X, Zhang P Q, Xu Y S, Dai S X, Wang X S, Xu T F, Nie Q H {2012 Acta Photon. Sin. 5 4 (in Chinese) [刘永兴, 张培晴, 许银生, 戴世勋, 王训四, 徐铁峰, 聂秋华 2012 光子学报 5 4]

    [11]

    Cao Y, Nie Q H, Xu T F, Dai S X, Shen X, Wang X S {2010 Acta Photon. Sin. 39 7 (in Chinese) [曹莹, 聂秋华, 徐铁峰, 戴世勋, 沈祥, 王训四 2010 光子学报 39 7]

    [12]

    Stegeman R, Stegeman G, Delfyett P, Petit L, Carlie N, Richardson K, Couzi M 2006 Opt. Express 14 11702

    [13]

    Dai G, Tassone F, Russo V, Bottani C, Amore F 2004 IEEE Photon. Tech. Lett. 16 1011

    [14]

    O'Donnell M, Richardson K, Stolen R, Rivero C, Cardinal T, Couzi M, Furniss D, Seddon A 2008 Opt. Mater. 30 946

    [15]

    Ren J H, Shong P, Wu Y G, Xiao H F, Duan G Y, Wu W {2004 J. Quantum Elect. 21 665 (in Chinese) [任建华, 宋鹏, 吴永刚, 肖鸿飞, 段高燕, 吴炜 2004 量子电子学报 21 665]

    [16]

    Rivero C, Richardson K, Stegeman R, Stegeman G, Cardinal T, Fargin E, Couzi M, Rodriguez V {2004 J. Non-Cryst. Solids 345 396

    [17]

    Plotnichenko V, Sokolov V, Koltashev V, Dianov E, Grishin I, Churbanov M 2005 Opt. Lett. 30 1156

    [18]

    Čern P, Zverev P G, Jelnkova H, Basiev T T 2000 Opt. Commun. 177 397

    [19]

    McClung F, Weiner D 1964 J. Opt. Soc. Am. 54 641

    [20]

    Guery G, Fargues A, Cardinal T, Dussauze M, Adamietz F, Rodriguez V, Musgraves J D, Richardson K, Thomas P 2012 Chem. Phys. Lett. 554 123

    [21]

    Rivero C, Stegeman R, Couzi M, Talaga D, Cardinal T, Richardson K, Stegeman G 2005 Opt. Express 13 4759

    [22]

    Jackson J, Smith C, Massera J, Rivero-Baleine C, Bungay C, Petit L, Richardson K 2009 Opt. Express 17 9071

    [23]

    Stegeman R, Rivero C, Richardson K, Stegeman G, Delfyett J P, Guo Y, Pope A, Schulte A, Cardinal T, Thomas P 2005 Opt. Express 13 1144

    [24]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [25]

    Chen Y, Shen X, Wang R P, Wang G, Dai S X, Xu T F, Nie Q H 2013 J. Alloy. Compd. 548 155

    [26]

    Snopatin G, Shiryaev V, Plotnichenko V, Dianov E, Churbanov M 2009 Inorganic Mater. 45 1439

    [27]

    Kulkarni O P, Xia C, Lee D J, Kumar M, Kuditcher A, Islam M N, Terry F L, Freeman M J, Aitken B G, Currie S C 2006 Opt. Express 14 7924

    [28]

    Asobe M, Kanamori T, Naganuma K, Itoh H, Kaino T 1995 J. Appl. Phys. 77 5518

    [29]

    Tuniz A, Brawley G, Moss D J, Eggleton B J 2008 Opt. Express 16 18524

    [30]

    Wang R P, Yan K, Yang Z, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16

  • [1]

    Li J F, Chen Y, Chen M, Chen H, Jin X B, Yang Y, Dai Z, Liu Y 2011 Opt. Commun. 284 1278

    [2]

    Kohoutek T, Yan X, Shiosaka T W, Yannopoulos S N, Chrissanthopoulos A, Suzuki T, Ohishi Y 2011 J. Opt. Soc. Am. B. 28 2284

    [3]

    Thielen P A, Shaw L B, Pureza P C, Nguyen V Q, Sanghera J S, Aggarwal I D 2003 Opt. Lett. 28 1406

    [4]

    Jackson S D, Anzueto-Snchez G 2006 Appl . Phys. Lett. 88 221106

    [5]

    Fortin V, Bernier M, El-Amraoui M, Messaddeq Y, Vallee R 2013 IEEE Photon. J. 5 1502309

    [6]

    Ahmad R, Rochette M 2012 Opt. Lett. 37 4549

    [7]

    Li J F, Chen Y, Chen M, Chen H, Jin X B, Liu Y, Liu Y Z {2010 J. Light Scattering 22 220 (in Chinese) [李剑峰, 陈玉, 陈明, 陈昊, 敬雪碧, 刘永, 刘永智 2010 光散射学报 22 220]

    [8]

    Ahmad R, Rochette M 2012 Appl . Phys. Lett. 101 101110

    [9]

    Bernier M, Fortin V, El-Amraoui M, Messaddeq Y, Vallee R 2014 Opt. Lett. 39 2052

    [10]

    Liu Y X, Zhang P Q, Xu Y S, Dai S X, Wang X S, Xu T F, Nie Q H {2012 Acta Photon. Sin. 5 4 (in Chinese) [刘永兴, 张培晴, 许银生, 戴世勋, 王训四, 徐铁峰, 聂秋华 2012 光子学报 5 4]

    [11]

    Cao Y, Nie Q H, Xu T F, Dai S X, Shen X, Wang X S {2010 Acta Photon. Sin. 39 7 (in Chinese) [曹莹, 聂秋华, 徐铁峰, 戴世勋, 沈祥, 王训四 2010 光子学报 39 7]

    [12]

    Stegeman R, Stegeman G, Delfyett P, Petit L, Carlie N, Richardson K, Couzi M 2006 Opt. Express 14 11702

    [13]

    Dai G, Tassone F, Russo V, Bottani C, Amore F 2004 IEEE Photon. Tech. Lett. 16 1011

    [14]

    O'Donnell M, Richardson K, Stolen R, Rivero C, Cardinal T, Couzi M, Furniss D, Seddon A 2008 Opt. Mater. 30 946

    [15]

    Ren J H, Shong P, Wu Y G, Xiao H F, Duan G Y, Wu W {2004 J. Quantum Elect. 21 665 (in Chinese) [任建华, 宋鹏, 吴永刚, 肖鸿飞, 段高燕, 吴炜 2004 量子电子学报 21 665]

    [16]

    Rivero C, Richardson K, Stegeman R, Stegeman G, Cardinal T, Fargin E, Couzi M, Rodriguez V {2004 J. Non-Cryst. Solids 345 396

    [17]

    Plotnichenko V, Sokolov V, Koltashev V, Dianov E, Grishin I, Churbanov M 2005 Opt. Lett. 30 1156

    [18]

    Čern P, Zverev P G, Jelnkova H, Basiev T T 2000 Opt. Commun. 177 397

    [19]

    McClung F, Weiner D 1964 J. Opt. Soc. Am. 54 641

    [20]

    Guery G, Fargues A, Cardinal T, Dussauze M, Adamietz F, Rodriguez V, Musgraves J D, Richardson K, Thomas P 2012 Chem. Phys. Lett. 554 123

    [21]

    Rivero C, Stegeman R, Couzi M, Talaga D, Cardinal T, Richardson K, Stegeman G 2005 Opt. Express 13 4759

    [22]

    Jackson J, Smith C, Massera J, Rivero-Baleine C, Bungay C, Petit L, Richardson K 2009 Opt. Express 17 9071

    [23]

    Stegeman R, Rivero C, Richardson K, Stegeman G, Delfyett J P, Guo Y, Pope A, Schulte A, Cardinal T, Thomas P 2005 Opt. Express 13 1144

    [24]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [25]

    Chen Y, Shen X, Wang R P, Wang G, Dai S X, Xu T F, Nie Q H 2013 J. Alloy. Compd. 548 155

    [26]

    Snopatin G, Shiryaev V, Plotnichenko V, Dianov E, Churbanov M 2009 Inorganic Mater. 45 1439

    [27]

    Kulkarni O P, Xia C, Lee D J, Kumar M, Kuditcher A, Islam M N, Terry F L, Freeman M J, Aitken B G, Currie S C 2006 Opt. Express 14 7924

    [28]

    Asobe M, Kanamori T, Naganuma K, Itoh H, Kaino T 1995 J. Appl. Phys. 77 5518

    [29]

    Tuniz A, Brawley G, Moss D J, Eggleton B J 2008 Opt. Express 16 18524

    [30]

    Wang R P, Yan K, Yang Z, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16

  • [1] 夏克伦, 管永年, 顾杰荣, 贾光, 仵苗苗, 沈祥, 刘自军. Ge20Se80–xTex 玻璃网络结构演变及理论带隙-玻璃性能评价. 物理学报, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [2] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究. 物理学报, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [3] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [4] 刘艳红, 周瑶瑶, 闫智辉, 贾晓军. 利用自发拉曼散射建立三个原子节点的纠缠. 物理学报, 2021, 70(9): 094201. doi: 10.7498/aps.70.20201299
    [5] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [6] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [7] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [8] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [9] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [10] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [11] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [12] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [13] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [14] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [15] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [18] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [19] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [20] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
计量
  • 文章访问数:  7467
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-29
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回