搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-Sb-Se硫系玻璃的折射率和热光系数

杨安平 王雨伟 张少伟 李兴隆 杨志杰 李耀程 杨志勇

引用本文:
Citation:

Ge-Sb-Se硫系玻璃的折射率和热光系数

杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇

Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass

Yang An-Ping, Wang Yu-Wei, Zhang Shao-Wei, Li Xing-Long, Yang Zhi-Jie, Li Yao-Cheng, Yang Zhi-Yong
PDF
导出引用
  • Ge-Sb-Se硫系玻璃被认为是极佳的红外传输材料和有潜力的非线性光学材料.在光学设计中,玻璃的线性折射率(n)及其热光系数(ζ)是关键技术参数.以预测和调控Ge-Sb-Se玻璃的nζ为目的,考察了玻璃的nζ,密度(d)和体积膨胀系数(β)与化学参数dSe和拓扑网络结构参数<r>的内在联系.研究发现,玻璃的nd的增加而增大;ζβ的增大而近似线性减小;βdSe的减小或<r>的增大而减小;当Ge含量固定时,ddSe的减小或<r>的增大而增大,当Sb含量固定时,ddSe=0时具有最小值.基于实测dn,拟合获得了Ge,Sb和Se元素在2–12 μm波段的摩尔折射度(Ri),分别为RGe=10.16–10.50 cm3/mol,RSb=16.71–17.08 cm3/mol和RSe=11.15–11.21 cm3/mol,根据dRi计算得到的n与实测值的偏差小于1%.基于实测ζβ,拟合得到了Ge,Sb和Se元素在2–12 μm波段的摩尔折射度温度系数(φi),分别为φGe=21.1–22.6 ppm/K,φSb=7.2–8.4 ppm/K和φSe=90.2–94.2 ppm/K,根据βφi计算得到的ζ与实测值的偏差小于6 ppm/K.
    Ge-Sb-Se chalcogenide glass is environmentally friendly, and has wide infrared transmitting window, high optical nonlinearity, as well as good mechanical property. These make it a good material for infrared transmission and nonlinear optics. In optical designs, the refractive index (n) and thermo-optic coefficient (ζ) of the glass are key technical parameters. In order to predict and tailor the n and ζ of Ge-Sb-Se glass, compositions with different chemical and topological features are prepared, their n, ζ, density (d) and volume expansion coefficient (β) are measured, and the composition dependence of the parameters is systematically investigated. The chemical feature of the glass is quantified by the percentage deviation of the composition from the stoichiometric ratio and denoted as dSe. The topological feature is represented by the mean coordination number <r> of each atom in the composition. It is shown that the n of Ge-Sb-Se glass increases with d increasing; the ζ decreases almost linearly with β increasing; and the β decreases with dSe decreasing or <r> increasing. When the Ge content is fixed, the d increases with dSe decreasing or <r> increasing; when the Sb concentration is fixed, the d has a minimum value at dSe=0. Based on the measured d and n, the molar refractivity (Ri) of Ge, Sb and Se elements in a spectral range of 2-12 μm are calculated. The obtained value of RGe is in a range of 10.16-10.50 cm3/mol, RSd in a range of 16.71-17.08 cm3/mol, and RSe in a range of 11.15-11.21 cm3/mol. When the Ri and d are used to compute n of any composition, the discrepancy between the calculated value and the measured one is less than 1%. According to the measured ζ and β, the thermal coefficients of the molar refractivity (φi) of Ge, Sb, and Se elements in a wavelength region of 2-12 μm are computed. The optimal value of φGe is in a range of 21.1-22.6 ppm/K, φSb in a range of 7.2-8.4 ppm/K, and φSe in a range of 90.2-94.2 ppm/K. When the φi and β are used to compute ζ of any composition, the discrepancy between the calculated value and the measured value is less than 6 ppm/K.
    [1]

    Zhang X H, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Cha D, Kim H, Hwang Y, Jeong J, Kim J 2012 Appl. Opt. 51 5649

    [3]

    Qi S S, Zhang B, Zhai C C, Li Y C, Yang A P, Yu Y, Tang D Y, Yang Z Y, Luther-Davies B 2017 Opt. Express 25 26148

    [4]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) pp438-470

    [5]

    Singh V, Lin P, Patel N, Lin H, Li L, Zou Y, Deng F, Ni C, Hu J, Giammarco J, Soliani A, Zdyrko B, Luzinov I, Novak S, Novak J, Wachtel P, Danto S, Musgraves J, Richardson K, Kimerling L, Agarwal A 2014 Sci. Technol. Adv. Mater. 15 014603

    [6]

    Ma P, Choi D, Yu Y, Yang Z Y, Vu K, Thach N, Mitchell A, Luther-Davies B, Madden S 2015 Opt. Express 23 19969

    [7]

    Yan T Y, Shen X, Wang R P, Wang G X, Dai S X, Xu T F, Nie Q H 2017 Chin. Phys. B 26 024213

    [8]

    Dai S X, Wang Y Y, Pen X F, Zhang P Q, Wang X S, Xu Y S 2018 Appl. Sci. Basel 8 707

    [9]

    Bernier M, Fortin V, Caron N, El-Amraoui M, Messaddeq Y, Vallee R 2013 Opt. Lett. 38 127

    [10]

    Kabakova I, Pant R, Winful H, Eggleton B 2014 J. Nonlinear Opt. Phys. Mater. 23 1450001

    [11]

    Zhang B, Yu Y, Zhai C C, Qi S S, Wang Y W, Yang A P, Gai X, Wang R P, Yang Z Y, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565

    [12]

    Zhang X Y, Chen F F, Zhang X H, Ji W 2018 Chin. Phys. B 27 084208

    [13]

    Gleason B, Richardson K, Sisken L, Smith C 2016 Int. J. Appl. Glass Sci. 7 374

    [14]

    Wang T, Gulbiten O, Wang R, Yang Z, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436

    [15]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88

    [16]

    Thorpe M F 1983 J. Non-Cryst. Solids 57 355

    [17]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE CR72 3

    [18]

    Prod'homme L 1960 Phys. Chem. Glasses 1 119

    [19]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [20]

    Han X, Tao H, Gong L, Wang X, Zhao X, Yue Y 2014 J. Non-Cryst. Solids 391 117

    [21]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) pp46-258

  • [1]

    Zhang X H, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Cha D, Kim H, Hwang Y, Jeong J, Kim J 2012 Appl. Opt. 51 5649

    [3]

    Qi S S, Zhang B, Zhai C C, Li Y C, Yang A P, Yu Y, Tang D Y, Yang Z Y, Luther-Davies B 2017 Opt. Express 25 26148

    [4]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) pp438-470

    [5]

    Singh V, Lin P, Patel N, Lin H, Li L, Zou Y, Deng F, Ni C, Hu J, Giammarco J, Soliani A, Zdyrko B, Luzinov I, Novak S, Novak J, Wachtel P, Danto S, Musgraves J, Richardson K, Kimerling L, Agarwal A 2014 Sci. Technol. Adv. Mater. 15 014603

    [6]

    Ma P, Choi D, Yu Y, Yang Z Y, Vu K, Thach N, Mitchell A, Luther-Davies B, Madden S 2015 Opt. Express 23 19969

    [7]

    Yan T Y, Shen X, Wang R P, Wang G X, Dai S X, Xu T F, Nie Q H 2017 Chin. Phys. B 26 024213

    [8]

    Dai S X, Wang Y Y, Pen X F, Zhang P Q, Wang X S, Xu Y S 2018 Appl. Sci. Basel 8 707

    [9]

    Bernier M, Fortin V, Caron N, El-Amraoui M, Messaddeq Y, Vallee R 2013 Opt. Lett. 38 127

    [10]

    Kabakova I, Pant R, Winful H, Eggleton B 2014 J. Nonlinear Opt. Phys. Mater. 23 1450001

    [11]

    Zhang B, Yu Y, Zhai C C, Qi S S, Wang Y W, Yang A P, Gai X, Wang R P, Yang Z Y, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565

    [12]

    Zhang X Y, Chen F F, Zhang X H, Ji W 2018 Chin. Phys. B 27 084208

    [13]

    Gleason B, Richardson K, Sisken L, Smith C 2016 Int. J. Appl. Glass Sci. 7 374

    [14]

    Wang T, Gulbiten O, Wang R, Yang Z, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436

    [15]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88

    [16]

    Thorpe M F 1983 J. Non-Cryst. Solids 57 355

    [17]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE CR72 3

    [18]

    Prod'homme L 1960 Phys. Chem. Glasses 1 119

    [19]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [20]

    Han X, Tao H, Gong L, Wang X, Zhao X, Yue Y 2014 J. Non-Cryst. Solids 391 117

    [21]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) pp46-258

  • [1] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生. 物理学报, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [2] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [3] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [4] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [5] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [6] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [7] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [8] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [9] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [10] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [12] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [13] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [14] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [15] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [16] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [19] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究. 物理学报, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [20] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
计量
  • 文章访问数:  4953
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2018-11-23
  • 刊出日期:  2019-01-05

Ge-Sb-Se硫系玻璃的折射率和热光系数

  • 1. 江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 徐州 221116;
  • 2. 上海航天控制技术研究所, 上海 201109

摘要: Ge-Sb-Se硫系玻璃被认为是极佳的红外传输材料和有潜力的非线性光学材料.在光学设计中,玻璃的线性折射率(n)及其热光系数(ζ)是关键技术参数.以预测和调控Ge-Sb-Se玻璃的nζ为目的,考察了玻璃的nζ,密度(d)和体积膨胀系数(β)与化学参数dSe和拓扑网络结构参数<r>的内在联系.研究发现,玻璃的nd的增加而增大;ζβ的增大而近似线性减小;βdSe的减小或<r>的增大而减小;当Ge含量固定时,ddSe的减小或<r>的增大而增大,当Sb含量固定时,ddSe=0时具有最小值.基于实测dn,拟合获得了Ge,Sb和Se元素在2–12 μm波段的摩尔折射度(Ri),分别为RGe=10.16–10.50 cm3/mol,RSb=16.71–17.08 cm3/mol和RSe=11.15–11.21 cm3/mol,根据dRi计算得到的n与实测值的偏差小于1%.基于实测ζβ,拟合得到了Ge,Sb和Se元素在2–12 μm波段的摩尔折射度温度系数(φi),分别为φGe=21.1–22.6 ppm/K,φSb=7.2–8.4 ppm/K和φSe=90.2–94.2 ppm/K,根据βφi计算得到的ζ与实测值的偏差小于6 ppm/K.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回