搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究

米浩婷 杨安平 黄梓轩 田康振 李跃兵 马成 刘自军 沈祥 杨志勇

引用本文:
Citation:

Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究

米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇

Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and fibers

Mi Hao-Ting, Yang An-Ping, Huang Zi-Xuan, Tian Kang-Zhen, Li Yue-Bing, Ma Cheng, Liu Zi-Jun, Shen Xiang, Yang Zhi-Yong
PDF
HTML
导出引用
  • 本工作确定了一种新型的Ga2S3-Sb2S3-Ag2S硫系玻璃体系的玻璃形成区, 研究了玻璃的热稳定性和光学性能、稀土离子掺杂玻璃的中红外发光特性以及玻璃的成纤性能, 评估了该玻璃在中红外波段的应用潜力. 实验结果表明, Ga2S3-Sb2S3-Ag2S体系的玻璃形成区为 ~10%—30% Ga2S3, ~60%—80% Sb2S3和~0—15% Ag2S(均为摩尔分数); 该玻璃具有较宽的红外透过范围 (~0.8—13.5 μm)、较高的线性折射率 (~2.564—2.713@10 μm)和较大的三阶非线性折射率 (~9.7×10–14—15.7×10–14 cm2/W @1.55 μm); 使用1.32 µm激光抽运, 稀土离子Dy3+在该玻璃中表现出较强的2.91 μm和4.41 μm中红外发射, 发射量子效率分别达76.6%和70.8%; 拉制的 20Ga2S3-75Sb2S3-5Ag2S: Dy3+(质量分数为0.05%)/20Ga2S3-70Sb2S3-10Ag2S (纤芯/包层)光纤在2—8 μm具有良好的传输性能, 最低损耗为~3.5 dB/m (@5.7 μm). 这些优异的性能使得该玻璃或光纤有望应用于红外热成像、非线性光学、中红外光纤激光器等领域.
    With the rapid development of infrared technology and the wide applications of infrared optical components, the demand for infrared optical materials has risen significantly. Chalcogenide glass has been considered as one of the most popular infrared optical materials because of its wide infrared transmission range, high refractive index, low phonon energy, good rheological properties, low cost, etc. In this work, a new type of Ga2S3-Sb2S3-Ag2S chalcogenide glass system is reported, and its glass forming domain is determined. The thermal stability and optical property, mid-infrared (MIR) emission of rare earth dopant, and fiber-forming property for the glasses are studied. The potential applications of the glasses in the MIR region are also evaluated. The experimental results show that the Ga2S3-Sb2S3-Ag2S system has a glass forming domain of ~10%–30% Ga2S3, ~60%–80% Sb2S3 and ~0–15% Ag2S (all in molar percentage). These glasses have a wide infrared transmission range of ~0.8–13.5 μm, relatively high linear refractive indices of~2.564–2.713 (at 10 μm), and relatviely large third-order nonlinear refractive indices of ~9.7×10–14–15.7×10–14 cm2/W (at 1.55 μm). These excellent properties make the Ga2S3-Sb2S3-Ag2S glass promising material in the fields of infrared thermal imaging and nonlinear optics. Under the excitation of 1.32 µm laser, the rare earth dopant Dy3+ shows strong 2.91 μm and 4.41 μm MIR emissions in the glass. According to the J-O theory, the three strength parameters (Ω2, Ω4, Ω6) of Dy3+ in 0.05% weight of Dy3+ doped 20Ga2S3-75Sb2S3-5Ag2S glass are 7.38×10–20 cm2, 2.24×10–20 cm2 and 0.75×10–20 cm2, respectively. The quantum efficiencies of the 2.91 μm and 4.41 μm emissions are calculated to be 76.6% and 70.8%, respectively, while the stimulated emission cross sections of those two bands are 1.27×10–20 cm2 and 1.43×10–20 cm2, respectively. The fiber based on 20Ga2S3-75Sb2S3-5Ag2S: 0.05% Dy3+ core glass and 20Ga2S3-70Sb2S3-10Ag2S cladding glass is fabricated by rod tube method. The fiber has good transmission performance in the 2–8 μm wavelength range, and the minimum loss is ~3.5 dB/m at 5.7 μm. The Dy3+ ions show intense 2.93 μm and 4.45 μm MIR emissions in the fibers under 1.32 μm excitation. These results indicate that the Dy3+ doped Ga2S3-Sb2S3-Ag2S glass fiber can be a promising candidate for MIR fiber laser medium.
      通信作者: 杨安平, apyang@jsnu.edu.cn ; 杨志勇, yangzhiyong@jsnu.edu.cn
    • 基金项目: 国家自然科学基金区域发展联合基金 (批准号: U21A2056)和浙江省重点研发计划 (批准号: 2021C01025)资助的课题.
      Corresponding author: Yang An-Ping, apyang@jsnu.edu.cn ; Yang Zhi-Yong, yangzhiyong@jsnu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U21A2056) and Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01025)
    [1]

    Cai D W, Xie Y, Guo X, Wang P, and Tong L M 2021 Photonics 8 497Google Scholar

    [2]

    Karami E, Tavoosi M, Ghasemi A, Loghmanestarki M R 2019 Ceram. Int. 45 7956Google Scholar

    [3]

    Zhang L F, Guan F, Zhang L, Jiang Y G 2022 Opt. Mater. Express 12 1683Google Scholar

    [4]

    Zhu J Q, Zhu H, Xu H L, Weng Z P, Wu H Z 2018 Infrared Phys. Technol. 92 13Google Scholar

    [5]

    Shiryaev V S, Churbanov M F 2017 J. Non-Cryst. Solids 475 1Google Scholar

    [6]

    Gui Y M, Guan Y N, Zhang X S, Zhang C Q, Xia K L, He L, Shen X, Liu Z J 2022 Opt. Express 30 21491Google Scholar

    [7]

    Liu L T, Chen F Y, Cui J, Xiao X S, Xu Y T, Hou C Q, Cui X X, Guo H T 2021 Ceram. Int. 47 6388Google Scholar

    [8]

    Lucas P, Yang Z Y, Fah M K, Luo T, Jiang S B, Boussard-Pledel C, Anne M-L, and Bureau B 2013 Opt. Mater. Express 3 1049Google Scholar

    [9]

    Zhang X H, Bureau B, Lucas P, Boussard-Pledel C, Lucas J 2008 Chemistry 14 432Google Scholar

    [10]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 物理学报 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [11]

    Li R, Zhou W J, Zhou C F, Qi Q Y, Li Y W, Yang Y T, Zhang W, Zhang P Q, Dai S X, Xu T F 2022 Ceram. Int. 48 7956

    [12]

    Yang A P, Zhang M J, Li L, Wang Y W, Zhang B, Yang Z Y, Tang D Y 2016 J. Am. Ceram. S℃. 99 12Google Scholar

    [13]

    Huang X Y, Jiao Q, Lin C G, Ma H L, Zhang X H, Zhu E W, Liu X Y, Dai S X, Xu T F 2018 Sci. Rep. 8 1699Google Scholar

    [14]

    Qiu J H, Yang A P, Zhang M J, Li L, Zhang B, Yang Z Y, Tang D Y 2017 J. Am. Ceram. Soc. 100 5107Google Scholar

    [15]

    Yang A P, Qiu J H, Zhang M J, Ren H, Zhai C C, Qi S S, Zhang B, Tang D Y, Yang Z Y 2017 J. Alloys Compd. 695 1237Google Scholar

    [16]

    Sun M Y, Yang A P, Zhang X H, Ma H L, Zhang M J, Tian K Z, Feng X, Yang Z Y 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [17]

    杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇 2019 物理学报 68 017801Google Scholar

    Yang A P, Wang Y W, Zhang S W, Li X L, Yang Z J, Li Y C, Yang Z Y 2019 Acta Phys. Sin. 68 017801Google Scholar

    [18]

    Yang Y, Yang Z Y, Lucas P, Wang Y W, Yang Z J, Yang A P, Zhang B, Tao H Z 2016 J. Non-Cryst. Solids 440 38Google Scholar

    [19]

    Zhang M J, Li L, Li T T, Wang F, Tian K Z, Tao H Z, Feng X, Yang A P, Yang Z Y 2019 Opt. Express 27 29287Google Scholar

    [20]

    张鸣杰, 杨安平, 张斌, 任和, 郭威, 杨艳, 翟诚诚, 王雨伟, 杨志勇, 唐定远 2015 中国激光 42 08060001

    Zhang M J, Yang A P, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y, Tang D Y 2015 Chin. J. Lasers 42 08060001

    [21]

    Zhang M J, Yang Z Y, Zhao H, Yang A P, Li L, Tao H Z 2017 J. Alloys Compd. 722 166Google Scholar

    [22]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [23]

    Boyd R, Masters B 2009 J. Biomed. Opt. 14 029902Google Scholar

    [24]

    Yang Z Y, Li B T, He F, Luo L, Chen W 2008 J. Non-Cryst. Solids 354 1198Google Scholar

    [25]

    Shiryaev V S, Sukhanov M V, Velmuzhov A P, Karaksina E V, Kotereva T V, Snopatin G E, Denker B I, Galagan B I, Sverchkov S E, Koltashev V V, Plotnichenko V G 2021 J. Non-Cryst. Solids 567 120939Google Scholar

    [26]

    Shiryaev V S, Velmuzhov A P, Tang Z Q, Churbanov M F, Seddon A B 2014 Opt. Mater. 37 18Google Scholar

    [27]

    郭威, 张斌, 翟诚诚, 祁思胜, 余懿, 杨安平, 李雷, 杨志勇, 王荣平, 唐定远, 陶光明, Luther-Davies Barry 2016 无机材料学报 31 180Google Scholar

    Guo W, Zhang B, Zhai C C, Qi S S, Yu Y, Yang A P, Li L, Yang Z Y, Wang R P, Tang D Y, Tao G M, Luther-Davies B 2016 J. Inorg. Mater. 31 180Google Scholar

    [28]

    Tichy L, Ticha H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [29]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) p1687

    [30]

    Dean J A 1998 Lange's handbook of chemistry (New York: McGraw-Hill Professional) p1561

    [31]

    Fraenkl M, Frumarova B, Podzemna V, Slang S, Benes L, Vlcek M, Wagner T 2018 J. Non-Cryst. Solids 499 412Google Scholar

    [32]

    Ma B C, Jiao Q, Zhang Y T, Sun X, Yin G L, Zhang X H, Ma H L, Liu X Y, Dai S X 2020 Ceram. Int. 46 6544Google Scholar

    [33]

    Yang Z Y, Luo L, Chen W 2006 J. Am. Ceram. Soc. 89 2327

    [34]

    崔茂林 1987 玻璃工艺学(北京: 中国轻工业出版社) 第140—153页

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) pp140–153 (in Chinese)

    [35]

    Dimitrov V, Komatsu T 2010 J. Univ. Chem. Technol. Metall. 45 219

    [36]

    Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York: John Wiley) pp419– 427

    [37]

    Gleason B, Richardson K, Sisken L, Smith C 2016 Int. J. Appl. Glass Sci. 7 374Google Scholar

    [38]

    Gai X, Choi D-Y, Madden S, Yang Z Y, Wang R P, Luther-Davies B 2012 Opt. Lett. 37 3870Google Scholar

    [39]

    Choia Y G, Song J H 2009 J. Non-Cryst. Solids 355 48

    [40]

    Judd B 1962 Phys. Rev. 127 750Google Scholar

    [41]

    Ofelt G 1962 J. Chem. Phys. 37 511Google Scholar

    [42]

    Chen D Q, Wang Y S, Yu Y L, Ma E, Hu Z J 2005 J. Phys. Condens. Matter 17 6545Google Scholar

    [43]

    Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar

    [44]

    Zhang M J, Yang A P, Peng Y F, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y, Tang D Y 2015 Mater. Res. Bull. 70 55Google Scholar

    [45]

    Schweizer T, Hewak D W, Samson B N, Payne D N 1996 Opt. Lett. 21 1594Google Scholar

  • 图 1  Ga2S3-Sb2S3-Ag2S体系的玻璃形成区

    Fig. 1.  Glass forming region of Ga2S3-Sb2S3-Ag2S system.

    图 2  厚度为2 mm xGa2S3-ySb2S3-zAg2S 玻璃的透射光谱

    Fig. 2.  Transmission spectra of xGa2S3-ySb2S3-zAg2S glasses with the thickness of 2 mm.

    图 3  (a) Dy3+掺杂20Ga2S3-75Sb2S3-5Ag2S玻璃的吸收光谱, 插图是玻璃在940 nm红外相机下的照片; (b) 1.32 μm激光抽运时, Dy3+掺杂20Ga2S3-75Sb2S3-5Ag2S玻璃的2—5 μm发射光谱

    Fig. 3.  (a) Absorption spectra of Dy3+-doped 20Ga2S3-75Sb2S3-5Ag2S glasses, the inset shows photos of the glasses under a 940 nm infrared camera; (b) 2–5 μm emission spectra of Dy3+-doped 20Ga2S3-75Sb2S3-5Ag2S glasses under 1.32 μm laser excitation

    图 4  20Ga2S3-75Sb2S3-5Ag2S:0.05%Dy3+/20Ga2S3-70Sb2S3-10Ag2S光纤的传输损耗谱, 插图是光纤在940 nm红外相机下的照片

    Fig. 4.  Attenuation of 20Ga2S3-75Sb2S3-5Ag2S:0.05%Dy3+/20Ga2S3-70Sb2S3-10Ag2S fiber, the inset is a photo of the fiber under a 940 nm infrared camera.

    图 5  20Ga2S3-75Sb2S3-5Ag2S:0.05%Dy3+/20Ga2S3-70Sb2S3-10Ag2S光纤在1.32 μm激发时的中红外发射光谱

    Fig. 5.  MIR emission spectrum of 20Ga2S3-75Sb2S3-5Ag2S:0.05%Dy3+/20Ga2S3-70Sb2S3-10Ag2S fiber when excited at 1.32 μm.

    表 1  xGa2S3-ySb2S3-zAg2S玻璃的特征温度

    Table 1.  Characteristic temperatures of xGa2S3-ySb2S3-zAg2S glasses.

    x-y-zTg (±1℃)Tx (±1℃)ΔT/℃
    Series A20-80-0240357117
    20-75-5235365130
    20-70-10232349117
    20-65-15228336108
    Series B25-75-0244369125
    20-75-5235365130
    15-75-10227342115
    10-75-15210319109
    Series C10-80-1021631397
    15-75-10227342115
    20-70-10232349117
    30-60-10246346100
    下载: 导出CSV

    表 2  xGa2S3-ySb2S3-zAg2S玻璃的物理参数

    Table 2.  The physical parameters of xGa2S3-ySb2S3-zAg2S glasses.

    x-y-zd/(g·cm–3)V/ (cm3·mol–1)λS/nmλ /μmn0 (@10 μm)
    Series A
    20-80-04.0915.6072913.712.6430
    20-75-54.1615.4274513.672.6380
    20-70-104.2315.2675113.632.6261
    20-65-154.3215.0376513.542.5990
    Series B25-75-04.0615.4674113.532.6279
    20-75-54.1615.4274513.672.6380
    15-75-104.2615.3276013.802.6650
    10-75-154.3915.2977313.942.6970
    Series C10-80-104.3015.5178513.972.7130
    15-75-104.2615.3276013.802.6650
    20-70-104.2315.2675113.632.6261
    30-60-104.1515.0375013.362.5641
    下载: 导出CSV

    表 3  xGa2S3-ySb2S3-zAg2S 玻璃在1.55 μm波长的n0n2

    Table 3.  n0 and n2 of xGa2S3-ySb2S3-zAg2S glasses at 1.55 μm.

    x-y-zn0 (@1.55 μm)n2/ (10–14 cm2·W–1)
    10-80-102.780215.7
    15-75-102.774814.0
    20-80-002.751612.4
    20-75-052.737011.1
    20-70-102.725510.6
    25-75-002.68879.7
    下载: 导出CSV

    表 4  Dy3+ 在20 Ga2S3-75 Sb2S3-5 Ag2S玻璃中的辐射参数, λ, β, τrad, τmea分别是发射波长、荧光分支比、能级辐射寿命和实测荧光寿命

    Table 4.  Radiative parameters of Dy3+ in 20 Ga2S3-75 Sb2S3-5 Ag2S glass, λ, β, τrad, τmea are emission wavelength, fluorescence branch ratio, radiative lifetime, and measured lifetime, respectively.

    Transitionλ/μmn0β/%τrad/msτmea/msη/%σem/(10–20 cm)
    6H11/26H13/24.412.70202.741.9470.81.43
    6H13/26H15/22.912.71804.953.7976.61.27
    下载: 导出CSV
  • [1]

    Cai D W, Xie Y, Guo X, Wang P, and Tong L M 2021 Photonics 8 497Google Scholar

    [2]

    Karami E, Tavoosi M, Ghasemi A, Loghmanestarki M R 2019 Ceram. Int. 45 7956Google Scholar

    [3]

    Zhang L F, Guan F, Zhang L, Jiang Y G 2022 Opt. Mater. Express 12 1683Google Scholar

    [4]

    Zhu J Q, Zhu H, Xu H L, Weng Z P, Wu H Z 2018 Infrared Phys. Technol. 92 13Google Scholar

    [5]

    Shiryaev V S, Churbanov M F 2017 J. Non-Cryst. Solids 475 1Google Scholar

    [6]

    Gui Y M, Guan Y N, Zhang X S, Zhang C Q, Xia K L, He L, Shen X, Liu Z J 2022 Opt. Express 30 21491Google Scholar

    [7]

    Liu L T, Chen F Y, Cui J, Xiao X S, Xu Y T, Hou C Q, Cui X X, Guo H T 2021 Ceram. Int. 47 6388Google Scholar

    [8]

    Lucas P, Yang Z Y, Fah M K, Luo T, Jiang S B, Boussard-Pledel C, Anne M-L, and Bureau B 2013 Opt. Mater. Express 3 1049Google Scholar

    [9]

    Zhang X H, Bureau B, Lucas P, Boussard-Pledel C, Lucas J 2008 Chemistry 14 432Google Scholar

    [10]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 物理学报 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [11]

    Li R, Zhou W J, Zhou C F, Qi Q Y, Li Y W, Yang Y T, Zhang W, Zhang P Q, Dai S X, Xu T F 2022 Ceram. Int. 48 7956

    [12]

    Yang A P, Zhang M J, Li L, Wang Y W, Zhang B, Yang Z Y, Tang D Y 2016 J. Am. Ceram. S℃. 99 12Google Scholar

    [13]

    Huang X Y, Jiao Q, Lin C G, Ma H L, Zhang X H, Zhu E W, Liu X Y, Dai S X, Xu T F 2018 Sci. Rep. 8 1699Google Scholar

    [14]

    Qiu J H, Yang A P, Zhang M J, Li L, Zhang B, Yang Z Y, Tang D Y 2017 J. Am. Ceram. Soc. 100 5107Google Scholar

    [15]

    Yang A P, Qiu J H, Zhang M J, Ren H, Zhai C C, Qi S S, Zhang B, Tang D Y, Yang Z Y 2017 J. Alloys Compd. 695 1237Google Scholar

    [16]

    Sun M Y, Yang A P, Zhang X H, Ma H L, Zhang M J, Tian K Z, Feng X, Yang Z Y 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [17]

    杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇 2019 物理学报 68 017801Google Scholar

    Yang A P, Wang Y W, Zhang S W, Li X L, Yang Z J, Li Y C, Yang Z Y 2019 Acta Phys. Sin. 68 017801Google Scholar

    [18]

    Yang Y, Yang Z Y, Lucas P, Wang Y W, Yang Z J, Yang A P, Zhang B, Tao H Z 2016 J. Non-Cryst. Solids 440 38Google Scholar

    [19]

    Zhang M J, Li L, Li T T, Wang F, Tian K Z, Tao H Z, Feng X, Yang A P, Yang Z Y 2019 Opt. Express 27 29287Google Scholar

    [20]

    张鸣杰, 杨安平, 张斌, 任和, 郭威, 杨艳, 翟诚诚, 王雨伟, 杨志勇, 唐定远 2015 中国激光 42 08060001

    Zhang M J, Yang A P, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y, Tang D Y 2015 Chin. J. Lasers 42 08060001

    [21]

    Zhang M J, Yang Z Y, Zhao H, Yang A P, Li L, Tao H Z 2017 J. Alloys Compd. 722 166Google Scholar

    [22]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [23]

    Boyd R, Masters B 2009 J. Biomed. Opt. 14 029902Google Scholar

    [24]

    Yang Z Y, Li B T, He F, Luo L, Chen W 2008 J. Non-Cryst. Solids 354 1198Google Scholar

    [25]

    Shiryaev V S, Sukhanov M V, Velmuzhov A P, Karaksina E V, Kotereva T V, Snopatin G E, Denker B I, Galagan B I, Sverchkov S E, Koltashev V V, Plotnichenko V G 2021 J. Non-Cryst. Solids 567 120939Google Scholar

    [26]

    Shiryaev V S, Velmuzhov A P, Tang Z Q, Churbanov M F, Seddon A B 2014 Opt. Mater. 37 18Google Scholar

    [27]

    郭威, 张斌, 翟诚诚, 祁思胜, 余懿, 杨安平, 李雷, 杨志勇, 王荣平, 唐定远, 陶光明, Luther-Davies Barry 2016 无机材料学报 31 180Google Scholar

    Guo W, Zhang B, Zhai C C, Qi S S, Yu Y, Yang A P, Li L, Yang Z Y, Wang R P, Tang D Y, Tao G M, Luther-Davies B 2016 J. Inorg. Mater. 31 180Google Scholar

    [28]

    Tichy L, Ticha H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [29]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) p1687

    [30]

    Dean J A 1998 Lange's handbook of chemistry (New York: McGraw-Hill Professional) p1561

    [31]

    Fraenkl M, Frumarova B, Podzemna V, Slang S, Benes L, Vlcek M, Wagner T 2018 J. Non-Cryst. Solids 499 412Google Scholar

    [32]

    Ma B C, Jiao Q, Zhang Y T, Sun X, Yin G L, Zhang X H, Ma H L, Liu X Y, Dai S X 2020 Ceram. Int. 46 6544Google Scholar

    [33]

    Yang Z Y, Luo L, Chen W 2006 J. Am. Ceram. Soc. 89 2327

    [34]

    崔茂林 1987 玻璃工艺学(北京: 中国轻工业出版社) 第140—153页

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) pp140–153 (in Chinese)

    [35]

    Dimitrov V, Komatsu T 2010 J. Univ. Chem. Technol. Metall. 45 219

    [36]

    Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds (New York: John Wiley) pp419– 427

    [37]

    Gleason B, Richardson K, Sisken L, Smith C 2016 Int. J. Appl. Glass Sci. 7 374Google Scholar

    [38]

    Gai X, Choi D-Y, Madden S, Yang Z Y, Wang R P, Luther-Davies B 2012 Opt. Lett. 37 3870Google Scholar

    [39]

    Choia Y G, Song J H 2009 J. Non-Cryst. Solids 355 48

    [40]

    Judd B 1962 Phys. Rev. 127 750Google Scholar

    [41]

    Ofelt G 1962 J. Chem. Phys. 37 511Google Scholar

    [42]

    Chen D Q, Wang Y S, Yu Y L, Ma E, Hu Z J 2005 J. Phys. Condens. Matter 17 6545Google Scholar

    [43]

    Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar

    [44]

    Zhang M J, Yang A P, Peng Y F, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y, Tang D Y 2015 Mater. Res. Bull. 70 55Google Scholar

    [45]

    Schweizer T, Hewak D W, Samson B N, Payne D N 1996 Opt. Lett. 21 1594Google Scholar

  • [1] 危超, 余炫, 雷诚, 王自昱, 刘胜, 王度. HBr空芯光纤气体激光器的振动热池多能级理论模型与设计仿真. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240428
    [2] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [3] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [4] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [5] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [6] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [7] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [8] 陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰. 铒铥共掺氧化锌薄膜近红外宽带发射及变温行为的研究. 物理学报, 2015, 64(4): 047104. doi: 10.7498/aps.64.047104
    [9] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [10] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [11] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [12] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [13] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤. 物理学报, 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
    [14] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [15] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究. 物理学报, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [18] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [19] 沈建其, 朱红毅, 施申蕾. 单模光子在光纤中运动的极化及几何相因子. 物理学报, 2002, 51(3): 536-540. doi: 10.7498/aps.51.536
    [20] 梁创, 符东浩, 梁冰, 廖静, 吴令安, 姚德成, 吕述望. 850nm光纤中1.1km量子密钥分发实验. 物理学报, 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
计量
  • 文章访问数:  2945
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-11-25
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-02-20

/

返回文章
返回