搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Te基远红外硫系玻璃光纤的制备及性能分析

吴波 赵浙明 王训四 江岭 密楠 潘章豪 张培晴 刘自军 聂秋华 戴世勋

引用本文:
Citation:

Te基远红外硫系玻璃光纤的制备及性能分析

吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋

Investigation on Te-based chalcogenide glasses for far-infrared fiber

Wu Bo, Zhao Zhe-Ming, Wang Xun-Si, Jang Ling, Mi Nan, Pan Zhang-Hao, Zhang Pei-Qing, Liu Zi-Jun, Nie Qiu-Hua, Dai Shi-Xun
PDF
导出引用
  • 随着光学技术由可见向中、远红外等长波长领域的发展,可透远红外的玻璃光纤研究成为近年来光学领域的发展热点之一.传统含Se的Te基硫系光纤无法工作于12 m以上的远红外.本文研究了新型GeTe-AgI硫系玻璃体系的提纯制备,利用挤压技术,制备了阶跃型GeTe-AgI远红外光纤,其光学损耗为:15.6 dB/m@10.6 m,整体低于24 dB/m@815 m.在实验过程中,首先采用传统的熔融-淬冷法和蒸馏纯化工艺制备了GeTe-AgI高纯玻璃样品.利用差示扫描量热仪、红外椭偏仪、红外光谱仪等测试了玻璃的物理性质和红外透过性能,分析了提纯工艺、AgI原料纯度对玻璃形成以及透过的影响,最后采用分步挤压法制备了芯包结构光纤.实验结果表明:蒸馏提纯和AgI原料纯度对玻璃的透过性能有着决定性的影响,同时Te含量的增加影响了玻璃的抗析晶能力,但新型挤压制备工艺和有效提纯技术共同保障了较低损耗Te基光纤的制备,所获得的GeTe-AgI光纤具有远红外宽谱应用的潜能(工作波段5.515 m)并且绿色环保,可以满足CO2激光的能量传输和远红外传感应用.
    When infrared (IR) is over 12 m, conventional chalcogenide (ChG) fibers are confused by the multiphonon absorption of Se, and novel glass materials for far-IR have become one of hot research points in recent years. Here, a novel ChG glass and fiber for far-IR without containing Se/As is well investigated. The glasses GeTe-AgI are purified by distillation and synthesized by melt-quenching method. The thermal properties and the infrared transmissions are reported. The step-index fiber, fabricated via a novel extrusion method, exhibits excellent transmission at 8-15 m: 24 dB/m in a range of 8-15 m and 15.6 dB/m at 10.6 m. The influences of oxygen contaminant and the purity of AgI on the glass transmission and fiber attenuation are discussed. Structural and physical properties of GeTe-AgI glass system are studied with differential scanning calorimetry and ellipsometer instrument. Optical spectra of GeTe-AgI glass system are obtained by spectrophotometer and infrared spectrometer. Main purification process with oxygen-getters (magnesium) is disclosed. The fiber attenuation is measured by the cut-back method with a Fourier transform infrared spectrometer. The lowest loss of this fiber can be reduced to 15.6 dB/m at 10.6 m. The results show that these glasses are well transparent in a wide IR window from 1.7 to 25 m, and these glass fibers can transmit light up to 15 m, thus the GeTe-AgI glass system is one of good candidates for far-IR. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These environment friendly fibers are suited for far-IR applications, such as greenhouse gas sensing and the power delivery of CO2 laser.
      通信作者: 王训四, wangxunsi@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377099,61177087,61307060,61627815)、浙江省重中之重学科开放基金(批准号:xkxl1508)、教育部新世纪优秀人才(批准号:NCET-10-0976)、浙江省151人才第三层次和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Wang Xun-Si, wangxunsi@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61377099,61177087,61307060,61627815),the Opened Key-Subject Construction Fund of Zhejiang Province,China (Grant No.xkxl1508),the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,China (Grant No.NCET-10-0976),the 151talents in Zhejiang Province,China,and the K.C.Wong Magna Fund of Ningbo University,China.
    [1]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 114212 (in Chinese)[孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋保安, 沈祥, 徐铁峰 2011 物理学报 60 114212]

    [2]

    Zhao Z M, Wang X S, Dai S X, Pan Z H, Liu S, Sun L H, Zhang P Q, Liu Z J, Nie Q H, Shen X, Wang R P 2016 Opt. Lett. 41 5222

    [3]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [4]

    Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D, Eggleton B J 2009 Appl. Opt. 48 5467

    [5]

    Danto S, Houizot P, Boussard-Pledel C, Zhang X H, Smektala F, Lucas J 2006 Adv. Funct. Mater. 16 1847

    [6]

    Shiryaev V S, Adam J L, Zhang X H, Boussard-Pldel C, Lucas J, Churbanov M F 2004 J. Non-Cryst. Solids 336 113

    [7]

    Zhao Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese)[赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 物理学报 65 124205]

    [8]

    Zhang X H, Ma H L, Blanchetiere C, Le Foulgoc K, Lucas J, Heuze J, Colardelle P, Froissard P, Picque D, Corrieu G 1994 Int. Soc. Opt. Photon. 2131 90

    [9]

    He Y J, Nie Q H, Sun J, Wang X S, Wang G X, Dai S X, Shen X, Xu T F 2011 Acta Photon. Sin. 40 1307

    [10]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C 2012 Spectrochim. Acta Part A:Molecul. Biomolecul. Spectrosc. 86 586

    [11]

    Vigreux-Bercovici C, Bonhomme E, Pradel A, Broquin J E, Labadie L, Kern P 2007 Appl. Phys. Lett. 90 1

    [12]

    Conseil C, Bastien J C, Boussard-Pledel C, Zhang X H, Lucas P, Dai S X, Lucas J, Bureau B 2012 Opt. Mater. Express 2 1470

    [13]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese)[聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [14]

    Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J, Zhang X H 2016 Opt. Eng. 55 056114

    [15]

    Hrub A, Houserov J 1972 Czechoslovak J. Phys. 22 89

    [16]

    Savage J A, Nielsen S 1965 Infrared Phys. 5 195

    [17]

    Chen G R, Cheng J J 1998 B. Chin. Ceram. Soc. 4 63

    [18]

    He Y J, Nie Q H, Wang X S, Wang G X, Dai S X, Xu T F, Zhang P Q, Zhang X H, Bureau B 2012 J. Optoelect. Laser 23 1109

    [19]

    Maurugeon S, Bureau B, Boussard-Pldel C, Faber A J, Zhang X H, Geliesen W, Lucas J 2009 J. Non-Cryst. Solids 355 2074

    [20]

    Dai S X, Wang G X, Nie Q H, Wang X S, Shen X, Xu T F, Ying L, Sun J, Bai K, Zhang X H 2010 Infrared Phys. Techn. 53 392

  • [1]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 114212 (in Chinese)[孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋保安, 沈祥, 徐铁峰 2011 物理学报 60 114212]

    [2]

    Zhao Z M, Wang X S, Dai S X, Pan Z H, Liu S, Sun L H, Zhang P Q, Liu Z J, Nie Q H, Shen X, Wang R P 2016 Opt. Lett. 41 5222

    [3]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [4]

    Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D, Eggleton B J 2009 Appl. Opt. 48 5467

    [5]

    Danto S, Houizot P, Boussard-Pledel C, Zhang X H, Smektala F, Lucas J 2006 Adv. Funct. Mater. 16 1847

    [6]

    Shiryaev V S, Adam J L, Zhang X H, Boussard-Pldel C, Lucas J, Churbanov M F 2004 J. Non-Cryst. Solids 336 113

    [7]

    Zhao Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese)[赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 物理学报 65 124205]

    [8]

    Zhang X H, Ma H L, Blanchetiere C, Le Foulgoc K, Lucas J, Heuze J, Colardelle P, Froissard P, Picque D, Corrieu G 1994 Int. Soc. Opt. Photon. 2131 90

    [9]

    He Y J, Nie Q H, Sun J, Wang X S, Wang G X, Dai S X, Shen X, Xu T F 2011 Acta Photon. Sin. 40 1307

    [10]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C 2012 Spectrochim. Acta Part A:Molecul. Biomolecul. Spectrosc. 86 586

    [11]

    Vigreux-Bercovici C, Bonhomme E, Pradel A, Broquin J E, Labadie L, Kern P 2007 Appl. Phys. Lett. 90 1

    [12]

    Conseil C, Bastien J C, Boussard-Pledel C, Zhang X H, Lucas P, Dai S X, Lucas J, Bureau B 2012 Opt. Mater. Express 2 1470

    [13]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese)[聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [14]

    Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J, Zhang X H 2016 Opt. Eng. 55 056114

    [15]

    Hrub A, Houserov J 1972 Czechoslovak J. Phys. 22 89

    [16]

    Savage J A, Nielsen S 1965 Infrared Phys. 5 195

    [17]

    Chen G R, Cheng J J 1998 B. Chin. Ceram. Soc. 4 63

    [18]

    He Y J, Nie Q H, Wang X S, Wang G X, Dai S X, Xu T F, Zhang P Q, Zhang X H, Bureau B 2012 J. Optoelect. Laser 23 1109

    [19]

    Maurugeon S, Bureau B, Boussard-Pldel C, Faber A J, Zhang X H, Geliesen W, Lucas J 2009 J. Non-Cryst. Solids 355 2074

    [20]

    Dai S X, Wang G X, Nie Q H, Wang X S, Shen X, Xu T F, Ying L, Sun J, Bai K, Zhang X H 2010 Infrared Phys. Techn. 53 392

  • [1] 郜培丽, 张振宇, 王冬, 张乐振, 徐光宏, 孟凡宁, 谢文祥, 毕胜. 绿色环保化学机械抛光液的研究进展. 物理学报, 2021, 70(6): 068101. doi: 10.7498/aps.70.20201917
    [2] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [3] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [4] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [5] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [6] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [7] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [8] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [9] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [10] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [12] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [13] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [14] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [15] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [16] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 朱军, 戴世勋, 王训四, 沈祥, 徐铁峰, 聂秋华. Pr3+/Ho3+共掺Ge-Ga-Se玻璃的2.9 μm荧光特性的研究. 物理学报, 2010, 59(8): 5803-5807. doi: 10.7498/aps.59.5803
    [19] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究. 物理学报, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [20] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
计量
  • 文章访问数:  2829
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-06
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-07-05

Te基远红外硫系玻璃光纤的制备及性能分析

  • 1. 宁波大学高等技术研究院, 红外材料与器件实验室, 宁波 315211;
  • 2. 宁波大学信息科学与工程学院, 宁波 315211;
  • 3. 浙江省光电探测材料及器件重点实验室, 宁波 315211;
  • 4. 嘉兴学院南湖学院, 嘉兴 314001
  • 通信作者: 王训四, wangxunsi@nbu.edu.cn
    基金项目: 国家自然科学基金(批准号:61377099,61177087,61307060,61627815)、浙江省重中之重学科开放基金(批准号:xkxl1508)、教育部新世纪优秀人才(批准号:NCET-10-0976)、浙江省151人才第三层次和宁波大学王宽诚幸福基金资助的课题.

摘要: 随着光学技术由可见向中、远红外等长波长领域的发展,可透远红外的玻璃光纤研究成为近年来光学领域的发展热点之一.传统含Se的Te基硫系光纤无法工作于12 m以上的远红外.本文研究了新型GeTe-AgI硫系玻璃体系的提纯制备,利用挤压技术,制备了阶跃型GeTe-AgI远红外光纤,其光学损耗为:15.6 dB/m@10.6 m,整体低于24 dB/m@815 m.在实验过程中,首先采用传统的熔融-淬冷法和蒸馏纯化工艺制备了GeTe-AgI高纯玻璃样品.利用差示扫描量热仪、红外椭偏仪、红外光谱仪等测试了玻璃的物理性质和红外透过性能,分析了提纯工艺、AgI原料纯度对玻璃形成以及透过的影响,最后采用分步挤压法制备了芯包结构光纤.实验结果表明:蒸馏提纯和AgI原料纯度对玻璃的透过性能有着决定性的影响,同时Te含量的增加影响了玻璃的抗析晶能力,但新型挤压制备工艺和有效提纯技术共同保障了较低损耗Te基光纤的制备,所获得的GeTe-AgI光纤具有远红外宽谱应用的潜能(工作波段5.515 m)并且绿色环保,可以满足CO2激光的能量传输和远红外传感应用.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回