搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究

乔北京 陈飞飞 黄益聪 戴世勋 聂秋华 徐铁峰

引用本文:
Citation:

Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究

乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰

Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses

Qiao Bei-Jing, Chen Fei-Fei, Huang Yi-Cong, Dai Shi-Xun, Nie Qiu-Hua, Xu Tie-Feng
PDF
导出引用
  • 在Ge-Se二元体系中引入相同摩尔比的Ga, Sn, Sb, Te四种元素, 使用熔融淬冷法制备了一系列硫系玻璃. 利用吸收光谱获得了不同元素引入下硫系玻璃能带结构的变化, 并结合拉曼光谱详细研究了产生光学特性变化的微观表征. 使用Z扫描方法测试了各个硫系玻璃样品在1550 nm波长下的三阶非线性参数, 发现加入Sn的玻璃的三阶非线性折射率n2最大, 达到了6.36×10-17 m2/W, 且其品质因子大于23, 表明Sn引入能够增强硫系玻璃在通信波段的三阶非线性, 这一研究结果为以后的高性能红外器件的设计及制备提供了一种环保且性能优良的候选材料.
    A series of Ge-Se chalcogenide glasses incorporated with same molar percentage of Ga, Sn, Sb and Te are synthesized by melt-quenching method. The variations of optical band gaps doped with different elements are investigated by absorption spectra, and the relationship of optical band gap with glass network structure is studied by Raman spectra The results show that the doping of heavy metallic elements (except Ga) could reduce the optical band gap of the Ge-Se glass due to the decrease of the number of Se-Se chains or ring bonds. Third-order optical nonlinearities of the glasses are studied by femtosecond Z-scan method at a telecom wavelength of 1550nm. The results show that the performance of third-order optical nonlinearity of the Ge-Se glass could be improved by doping the above-mentioned elements. By comparison, the Sn-doped Ge-Se glass has a maximum nonlinear refraction index (n2) of 6.36× 10-17 m2/W and a figure of merit of over 23. By combining the experimental results from Raman spectra, the enhancement of third-order optical nonlinearity after the introduction of Sn can be ascribed to the formation of Sn(Se1/2)4 tetrahedra that enters into the main frame of Ge-Se glass and results in a stable Ge-Sn-Se network. Te doping could also remarkably enhance the n2 value of the Ge-Se glass, however, it could cause large two-photon absorption, leading to a poor value of figure of merit. The research result shows that chalcogenide glass in Ge-Sn-Se ternary system is an ideal candidate material for designing and fabricating infrared devices with high performance and environmental friendness.
    • 基金项目: 国家自然科学基金(批准号: 61435009, 61308094) 国家重点基础研究发展计划(973计划项目子课题)(批准号: 2012CB722703)和宁波大学王宽诚幸福基金.
    • Funds: Project partially supported bythe National Natural Science Foundation of China (Grant Nos. 61435009, 61308094) National Program on Key Basic Research Project (973 Program) (Grant No. 2012CB722703), and K. C. Wong Magna Fund in Ningbo University.
    [1]

    Romanova E A, Kuzyutkina Y S, Konyukhov A I, Abdel-Moneim N, Seddon A B, Benson T M, Guizard S, Mouskeftaras A 2014 Opt. Eng 53 1

    [2]

    Ren J, Li B, Wagner T, Zeng H, Chen G 2014 Opt. Mater. 36 911

    [3]

    Chen F F, Dai S X, Lin C G, Yu Q S, Zhang Q 2013 Opt Express 21 24847

    [4]

    Chen F, Yu Q, Qiao B, Xu T, Dai S, Ji W 2015 J. Non-Cryst. Solids. 412 30

    [5]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt Mater Express 4 1011

    [6]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Xu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生林常规 2014 物理学报 63 014210]

    [7]

    Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S, Luther-Davies B 2013 Opt. Mater Express 3 1075

    [8]

    Guo H, Chen H, Hou C, Lin A, Zhu Y, Lu S, Gu S, Lu M, Peng B 2011 Mater. Res. Bull. 46 765

    [9]

    Hou Y, Liu Q, Zhou H, Gao C, Qian S, Zhao X 2010 Solid State Commun. 150 875

    [10]

    Petit L, Carlie N, Chen H, Gaylord S, Massera J, Boudebs G, Hu J, Agarwal A, Kimerling L, Richardson K 2009 J. Solid State Chem. 182 2756

    [11]

    Dong G, Tao H, Chu S, Xiao X, Wang S, Zhao X, Gong Q 2008 J. Non-Cryst. Solids. 354 440

    [12]

    Fayek S A 2005 Infrared Phys. Techn. 46 193

    [13]

    Tauc J,Menth A 1972 Journal of Non-Crystalline Solids 8 569

    [14]

    Sheik-Bahae M, Said A A, Wei TH, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron 26 760

    [15]

    Yin M, Li H, Tang S, Ji W 2000 Appl. Phys. B 70 587

    [16]

    Baeck J H, Kim T H, Choi H J, Jeong K H, Cho M H 2011 J. Phys. Chem. C 115 13462

    [17]

    Holomb R, Mitsa V, Akalin E, Akyuz S,Sichka M 2013 J. Non-Cryst. Solids. 373 51

    [18]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B: Condens. 60 R14985

    [19]

    Han X, Tao H, Pan R, Lang Y, Shang C, Xing X, Tu Q, Zhao X 2013 Physics Procedia 48 59

    [20]

    Adam A B 2009 Journal of King Saud University-Science. 21 93

  • [1]

    Romanova E A, Kuzyutkina Y S, Konyukhov A I, Abdel-Moneim N, Seddon A B, Benson T M, Guizard S, Mouskeftaras A 2014 Opt. Eng 53 1

    [2]

    Ren J, Li B, Wagner T, Zeng H, Chen G 2014 Opt. Mater. 36 911

    [3]

    Chen F F, Dai S X, Lin C G, Yu Q S, Zhang Q 2013 Opt Express 21 24847

    [4]

    Chen F, Yu Q, Qiao B, Xu T, Dai S, Ji W 2015 J. Non-Cryst. Solids. 412 30

    [5]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt Mater Express 4 1011

    [6]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Xu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生林常规 2014 物理学报 63 014210]

    [7]

    Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S, Luther-Davies B 2013 Opt. Mater Express 3 1075

    [8]

    Guo H, Chen H, Hou C, Lin A, Zhu Y, Lu S, Gu S, Lu M, Peng B 2011 Mater. Res. Bull. 46 765

    [9]

    Hou Y, Liu Q, Zhou H, Gao C, Qian S, Zhao X 2010 Solid State Commun. 150 875

    [10]

    Petit L, Carlie N, Chen H, Gaylord S, Massera J, Boudebs G, Hu J, Agarwal A, Kimerling L, Richardson K 2009 J. Solid State Chem. 182 2756

    [11]

    Dong G, Tao H, Chu S, Xiao X, Wang S, Zhao X, Gong Q 2008 J. Non-Cryst. Solids. 354 440

    [12]

    Fayek S A 2005 Infrared Phys. Techn. 46 193

    [13]

    Tauc J,Menth A 1972 Journal of Non-Crystalline Solids 8 569

    [14]

    Sheik-Bahae M, Said A A, Wei TH, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron 26 760

    [15]

    Yin M, Li H, Tang S, Ji W 2000 Appl. Phys. B 70 587

    [16]

    Baeck J H, Kim T H, Choi H J, Jeong K H, Cho M H 2011 J. Phys. Chem. C 115 13462

    [17]

    Holomb R, Mitsa V, Akalin E, Akyuz S,Sichka M 2013 J. Non-Cryst. Solids. 373 51

    [18]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B: Condens. 60 R14985

    [19]

    Han X, Tao H, Pan R, Lang Y, Shang C, Xing X, Tu Q, Zhao X 2013 Physics Procedia 48 59

    [20]

    Adam A B 2009 Journal of King Saud University-Science. 21 93

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究. 物理学报, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [3] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [4] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [5] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [6] 梁飞, 林哲帅, 吴以成. 基于第一性原理的新型非线性光学晶体探索. 物理学报, 2018, 67(11): 114203. doi: 10.7498/aps.67.20180189
    [7] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [8] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [9] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [10] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [11] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [12] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [13] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [14] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [15] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [16] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究. 物理学报, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [19] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [20] 朱 利, 杨文革, 徐玲玲, 陈定安, 王 文, 崔一平. 新型有机非线性光学材料L-苹果酸脲薄膜形成机理及性质研究. 物理学报, 2007, 56(1): 569-573. doi: 10.7498/aps.56.569
计量
  • 文章访问数:  5851
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-23
  • 修回日期:  2015-04-20
  • 刊出日期:  2015-08-05

/

返回文章
返回