搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱

许思维 王丽 沈祥

引用本文:
Citation:

GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱

许思维, 王丽, 沈祥

Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses

Xu Si-Wei, Wang Li, Shen Xiang
PDF
导出引用
  • 用拉曼散射光谱和X射线光电子能谱研究了GexSb20Se80-x(x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%和25 mol%)玻璃的结构. 通过对拉曼光谱和X射线光电子能谱(Ge 3d, Sb 4d 和Se 3d谱)进行分解, 发现当硫系玻璃处于富Se状态下时, 玻璃结构中会出现SeSeSe结构单元, 其数量随着Ge含量的增加而迅速减少, 并最终在Ge15Sb20Se65玻璃结构中消失; Ge和Sb原子分别以GeSe4/2 四面体和SbSe3/2三角锥结构单元在玻璃结构中出现, GeSe4/2四面体结构单元的数量会随着Ge浓度的增加而增加, 而SbSe3/2三角锥结构单元的数量基本保持稳定. 另一方面, 在缺Se的硫系玻璃中, 玻璃会有GeGe和SbSb同极键产生, 随着Ge含量的增大, 这种同极键的数量会越来越多; 而GeSe4/2四面体和SbSe3/2三角锥结构的数量则相应减少. 在所有玻璃样品的结构中均有同极键SeSe的存在. 当玻璃组分越接近完全化学计量配比时, 异质键GeSe和SbSe将占据玻璃结构中的主导地位, 同极键GeGe, SbSb和SeSe 的比例降为最小.
    In this paper, we prepare several GexSb20Se80-x glasses (x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%, and 25 mol%), and measure their Raman and X-ray photoelectron spectra (Ge 3d, Sb 4d, and Se 3d) in order to understand the evolution of the glass structure with chemical composition. We further decompose the spectra into different structural units according to the assignments of these structural units in the previous literature. It is found that the structural units of SeSeSe trimers exist in the Se-rich glasses, but the number of the structural units of trimers decreases rapidly with the increase of Ge concentration and finally becomes zero in Ge15Sb20Se65 glass. With the increase of Ge concentration, the quantity of GeSe4/2 tetrahedral structures increases, but the number of SbSe3/2 pyramidal structures remains almost unchanged in the Se-rich glasses. On the other hand, the numbers of GeGe and SbSb homopolar bonds increase with the increase of Ge concentration, but those of the GeSe4/2 tetrahedral and SbSe3/2 pyramidal structures decrease in the Se-poor glasses. Moreover, the SeSe homopolar bonds exist in all the glasses, and they cannot be completely suppressed. When the composition is close to stochiometric value, the glass is dominated by heteropolar GeSe and SbSe bonds, but has negligible quantities of GeGe, SbSb and SeSe homopolar bonds. The transition threshold, rather than the transition predicted by the topological constraint model, occurs at the chemically stoichiometric glasses. This suggests that chemical order, rather than topological order, is a main factor in determining structures and physical properties of GeSbSe glasses.
      通信作者: 王丽, lwang.1@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474014)和北京市教育委员会科技计划重点项目(批准号: Kz2011100050010)资助的课题.
      Corresponding author: Wang Li, lwang.1@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474014) and the Science and Technology Project of Beijing Municipal Education Commission, China (Grant No. Kz2011100050010).
    [1]

    Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141

    [2]

    Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804

    [3]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120

    [4]

    Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635

    [5]

    Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [6]

    Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792

    [7]

    Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947

    [8]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153

    [9]

    Tanaka K 1989 Phys. Rev. B 39 1270

    [10]

    Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520

    [11]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575

    [14]

    Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713

    [15]

    Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 物理学报 63 136502]

    [16]

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801]

    [17]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518

    [18]

    Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221

    [19]

    Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601

    [20]

    Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315

    [21]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [22]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85

    [23]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [24]

    Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663

    [25]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [26]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702

    [27]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205

    [28]

    Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537

    [29]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517

    [30]

    Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162

    [31]

    Li J, Drabold D A 2000 Phys. Rev. B 61 11998

  • [1]

    Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141

    [2]

    Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804

    [3]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120

    [4]

    Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635

    [5]

    Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [6]

    Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792

    [7]

    Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947

    [8]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153

    [9]

    Tanaka K 1989 Phys. Rev. B 39 1270

    [10]

    Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520

    [11]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575

    [14]

    Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713

    [15]

    Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 物理学报 63 136502]

    [16]

    Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 物理学报 61 056801]

    [17]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518

    [18]

    Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221

    [19]

    Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601

    [20]

    Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315

    [21]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [22]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85

    [23]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827

    [24]

    Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663

    [25]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571

    [26]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702

    [27]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205

    [28]

    Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537

    [29]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517

    [30]

    Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162

    [31]

    Li J, Drabold D A 2000 Phys. Rev. B 61 11998

  • [1] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [2] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [5] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [7] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [8] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [10] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [12] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [13] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数. 物理学报, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [14] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [15] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移. 物理学报, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [16] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [17] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [18] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [19] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
计量
  • 文章访问数:  3581
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-11-05

GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱

  • 1. 北京工业大学应用数理学院, 北京 100124;
  • 2. 宁波大学信息科学与工程学院, 宁波 315211
  • 通信作者: 王丽, lwang.1@bjut.edu.cn
    基金项目: 国家自然科学基金(批准号: 11474014)和北京市教育委员会科技计划重点项目(批准号: Kz2011100050010)资助的课题.

摘要: 用拉曼散射光谱和X射线光电子能谱研究了GexSb20Se80-x(x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%和25 mol%)玻璃的结构. 通过对拉曼光谱和X射线光电子能谱(Ge 3d, Sb 4d 和Se 3d谱)进行分解, 发现当硫系玻璃处于富Se状态下时, 玻璃结构中会出现SeSeSe结构单元, 其数量随着Ge含量的增加而迅速减少, 并最终在Ge15Sb20Se65玻璃结构中消失; Ge和Sb原子分别以GeSe4/2 四面体和SbSe3/2三角锥结构单元在玻璃结构中出现, GeSe4/2四面体结构单元的数量会随着Ge浓度的增加而增加, 而SbSe3/2三角锥结构单元的数量基本保持稳定. 另一方面, 在缺Se的硫系玻璃中, 玻璃会有GeGe和SbSb同极键产生, 随着Ge含量的增大, 这种同极键的数量会越来越多; 而GeSe4/2四面体和SbSe3/2三角锥结构的数量则相应减少. 在所有玻璃样品的结构中均有同极键SeSe的存在. 当玻璃组分越接近完全化学计量配比时, 异质键GeSe和SbSe将占据玻璃结构中的主导地位, 同极键GeGe, SbSb和SeSe 的比例降为最小.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回