搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究

黄浩 张侃 吴明 李虎 王敏涓 张书铭 陈建宏 文懋

引用本文:
Citation:

SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究

黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋

Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite

Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao
PDF
导出引用
  • 准确测量和分析SiC纤维增强Ti合金复合材料(SiCf/Ti)中残余应力状态对优化复合材料的成型工艺和理解其失效模式具有重要意义,但其残余应力的实验测量和分析仍是一个挑战.石墨C涂层作为SiC纤维与Ti17基体合金之间必需的扩散障涂层,承载了由纤维与基体之间热不匹配引入的残余应力.本文采用显微拉曼光谱法对比测量纤维表面C涂层在复合材料中和去掉基体无应力态下G峰的峰位,通过石墨C涂层应力态下峰位移动计算出SiCf/C/Ti17复合材料中SiC纤维受到~705.0 MPa的残余压应力.采用X射线衍射方法测量了不同方向上该复合材料中基体钛合金的晶面间距以获取其空间应变,根据三轴应力模型分析了复合材料中基体钛合金沿轴向方向的残余应力为~701.3 MPa的张应力,并通过线性弹性理论转化为SiC纤维的残余压应力为~759.4 MPa.两种测试方法都确定了SiC纤维在成型过程中受到残余压应力,且获得的应力值较为接近,都可以用于对SiCf/Ti复合材料的残余应力测量.
    Accurate measurement and analysis of residual stress state in the SiCf/Ti composites are crucial to optimizing their fabrication process and to understanding their failure mode, but they are still a challenge. In this work, SiCf/C/Ti17 composites with~48% fiber volume fraction, consisting of W-core SiC fibers (~100 m in diameter), turbostratic C coating (~2.5 m in thickness) and Ti17 matrix, are prepared by consolidating precursor wires fabricated by matrix-coated fiber method through hot isostatic pressing at 920℃/120 MPa/2 h; these samples are used for measuring their stresses. It is noted that turbostratic C coating, a necessary diffusion barrier layer between SiC fiber and Ti17 alloy matrix, bears the residual stress caused by the mismatch of thermal expansion coefficients between fiber and matrix during consolidation. It is found that the graphene planes are almost parallel to the axial direction of SiC fibers in the turbostratic C coating revealed by high magnification transmission electron microscope, and thus G peak position of C coating would be sensitive to stress state. Accordingly, micro-Raman spectroscopy is first used to measure the G peak positions of C coating under stress and stress-free state in the SiCf/C/Ti17 composite, respectively. Based on the position shift of G band caused by residual stress, the axial residual compressive stress of SiC fiber in SiCf/C/Ti17 composite is calculated to be~705.0 MPa. For comparison, X-ray diffraction method is also adopted to measure the interplanar spacing values of the Ti17 alloy matrix in different directions to obtain the spatial strains. During measurement, -Ti (213) high-angle diffraction peak is chosen to reduce test error, and then the different interplanar spacing values of -Ti (213) are obtained by varying the values of in three different directions at =0, 45 and 90. As three-axis-stress model is employed, the residual tensile stress of Ti17 alloy matrix in the axial direction of SiCf/C/Ti17 composite is~701.3 MPa, which is transformed through linear elastic theory into the residual compressive stress of SiC fiber of~759.4 MPa. The similar results confirm that it is reliable to characterize the residual stress in the SiCf/C/Ti17 composite with high-texture turbostratic carbon by both the Raman spectroscopy and the X-ray diffraction method.
      通信作者: 吴明, wuming15@mails.jlu.edu.cn;wenmao225@jlu.edu.cn ; 文懋, wuming15@mails.jlu.edu.cn;wenmao225@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51672101,51602122)和中国航空科学基金会(批准号:201430R4001)资助的课题.
      Corresponding author: Wu Ming, wuming15@mails.jlu.edu.cn;wenmao225@jlu.edu.cn ; Wen Mao, wuming15@mails.jlu.edu.cn;wenmao225@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation (Grant Nos. 51672101, 51602122) and the China Space Foundation of China (Grant No. 201430R4001).
    [1]

    Guo S Q, Kagawa Y, Saito H, Masuda C 1998 Mater. Sci. Eng. A 246 25

    [2]

    Zhao G, Yang Y, Zhang W, Luo X, Huang B, Yan C 2013 Composites Part B:Engineering 52 155

    [3]

    Wu M, Huang H, Li H, Zhang K, Wen M, Zheng W T 2017 Mater. Sci. Forum. 898 1388

    [4]

    Wu M, Zhang K, Huang H, Li H, Wang M J, Zhang S M, Chen J H, Wen M 2017 RSC Adv. 7 45327

    [5]

    Zhang W, Yang Y Q, Zhao G M, Huang B, Feng Z Q, Luo X, Li M H, Lou J H 2013 Intermetallics 33 54

    [6]

    Huang B, Yang Y, Luo H, Yuan M, Chen Y 2008 Mater. Sci. Eng. A 489 178

    [7]

    Aghdam M M, Morsali S R 2014 Comput. Mater. Sci. 91 62

    [8]

    Pickarda S M, Miracle D B 1995 Mater. Sci. Eng. A 203 59

    [9]

    Luo X, Yang Y Q, Li J K, Yuan M N, Huang B, Chen Y 2008 Mater. Des. 29 1755

    [10]

    Huang B, Yang Y Q, Luo H J, Yuan M N 2009 Mater. Des. 30 718

    [11]

    Luo J H, Yang Y Q, Yuan M N, Luo X, Liu C X (in Chinese) [娄菊红, 杨延清, 原梅妮, 罗贤, 刘翠霞 2009 材料导报 19 75]

    [12]

    Rangaswamy P, Prime M B, Daymond M, Bourke M A M, Clausen B, Choo H, Jayaraman N 1999 Mater. Sci. Eng. A 259 209

    [13]

    Rangaswamy P, Bourke M A M, Wright P K, Jayaraman N, Kartzmark E, Roberts J A 1997 Mater. Sci. Eng. A 224 200

    [14]

    Wang Y, Xiao P, Yang R 2016 Proceedings of the 13th World Conference on Titanium San Diego, California, USA, August 16-20, 2015 p1251

    [15]

    Galiotis C, Paipetis A, Marston C 1999 J. Raman Spectrosc. 30 899

    [16]

    Anastassakis E, Pinczuk A, Burstein E, Pollak F H, Cardona M 1970 Solid State Commun. 8 133

    [17]

    Ward Y, Young R J, Shatwell R A 2007 J. Mater. Sci. 42 5135

    [18]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [19]

    Reznik B, Httinger K J 2002 Carbon 40 621

    [20]

    Wu M, Zhang K, Huang H, Wang M J, Li H, Zhang S M, Wen M 2017 Carbon 124 238

    [21]

    Zhang H, Lpez-Honorato E, Xiao P 2015 Carbon 91 346

    [22]

    McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H, Keeley G P, Blau W J, Duesberg G S 2012 Carbon 50 1216

    [23]

    Liu B, Yang Y Q, Luo X, Huang B 2011 Spectrosc. Spect. Anal. 31 2956 (in Chinese) [刘斌, 杨延清, 罗贤, 黄斌 2011 光谱学与光谱分析 31 2956]

    [24]

    Bobet J L, Naslain R, Guette A, Ji N, Lebrun J L 1995 Acta Metall. Mater. 43 2255

    [25]

    Wen M, Huang H, Li H, Wu M, Hu C Q, Zhang K, Zheng W T 2017 Mater. Sci. Forum. 898 865

  • [1]

    Guo S Q, Kagawa Y, Saito H, Masuda C 1998 Mater. Sci. Eng. A 246 25

    [2]

    Zhao G, Yang Y, Zhang W, Luo X, Huang B, Yan C 2013 Composites Part B:Engineering 52 155

    [3]

    Wu M, Huang H, Li H, Zhang K, Wen M, Zheng W T 2017 Mater. Sci. Forum. 898 1388

    [4]

    Wu M, Zhang K, Huang H, Li H, Wang M J, Zhang S M, Chen J H, Wen M 2017 RSC Adv. 7 45327

    [5]

    Zhang W, Yang Y Q, Zhao G M, Huang B, Feng Z Q, Luo X, Li M H, Lou J H 2013 Intermetallics 33 54

    [6]

    Huang B, Yang Y, Luo H, Yuan M, Chen Y 2008 Mater. Sci. Eng. A 489 178

    [7]

    Aghdam M M, Morsali S R 2014 Comput. Mater. Sci. 91 62

    [8]

    Pickarda S M, Miracle D B 1995 Mater. Sci. Eng. A 203 59

    [9]

    Luo X, Yang Y Q, Li J K, Yuan M N, Huang B, Chen Y 2008 Mater. Des. 29 1755

    [10]

    Huang B, Yang Y Q, Luo H J, Yuan M N 2009 Mater. Des. 30 718

    [11]

    Luo J H, Yang Y Q, Yuan M N, Luo X, Liu C X (in Chinese) [娄菊红, 杨延清, 原梅妮, 罗贤, 刘翠霞 2009 材料导报 19 75]

    [12]

    Rangaswamy P, Prime M B, Daymond M, Bourke M A M, Clausen B, Choo H, Jayaraman N 1999 Mater. Sci. Eng. A 259 209

    [13]

    Rangaswamy P, Bourke M A M, Wright P K, Jayaraman N, Kartzmark E, Roberts J A 1997 Mater. Sci. Eng. A 224 200

    [14]

    Wang Y, Xiao P, Yang R 2016 Proceedings of the 13th World Conference on Titanium San Diego, California, USA, August 16-20, 2015 p1251

    [15]

    Galiotis C, Paipetis A, Marston C 1999 J. Raman Spectrosc. 30 899

    [16]

    Anastassakis E, Pinczuk A, Burstein E, Pollak F H, Cardona M 1970 Solid State Commun. 8 133

    [17]

    Ward Y, Young R J, Shatwell R A 2007 J. Mater. Sci. 42 5135

    [18]

    Sakata H, Dresselhaus G, Dresselhaus M S, Endo M 1988 J. Appl. Phys. 63 2769

    [19]

    Reznik B, Httinger K J 2002 Carbon 40 621

    [20]

    Wu M, Zhang K, Huang H, Wang M J, Li H, Zhang S M, Wen M 2017 Carbon 124 238

    [21]

    Zhang H, Lpez-Honorato E, Xiao P 2015 Carbon 91 346

    [22]

    McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H, Keeley G P, Blau W J, Duesberg G S 2012 Carbon 50 1216

    [23]

    Liu B, Yang Y Q, Luo X, Huang B 2011 Spectrosc. Spect. Anal. 31 2956 (in Chinese) [刘斌, 杨延清, 罗贤, 黄斌 2011 光谱学与光谱分析 31 2956]

    [24]

    Bobet J L, Naslain R, Guette A, Ji N, Lebrun J L 1995 Acta Metall. Mater. 43 2255

    [25]

    Wen M, Huang H, Li H, Wu M, Hu C Q, Zhang K, Zheng W T 2017 Mater. Sci. Forum. 898 865

  • [1] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [2] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [4] 张冠杰, 杨豪, 张楠. 利用X射线衍射技术对压电材料本征与非本征起源探究的研究进展. 物理学报, 2020, 69(12): 127711. doi: 10.7498/aps.69.20200301
    [5] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [6] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [7] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性. 物理学报, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [8] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [9] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [10] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析 . 物理学报, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [11] 韩亮, 刘德连, 陈仙, 赵玉清. 氮化铬过渡层对四面体非晶碳薄膜在高速钢基底上附着特性影响的研究. 物理学报, 2013, 62(9): 096802. doi: 10.7498/aps.62.096802
    [12] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [13] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [14] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [15] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [16] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究. 物理学报, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [17] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移. 物理学报, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [18] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [19] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 太阳电池用本征微晶硅材料的制备及其结构研究. 物理学报, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [20] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究. 物理学报, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
计量
  • 文章访问数:  3210
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 修回日期:  2018-07-24
  • 刊出日期:  2018-10-05

SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究

    基金项目: 国家自然科学基金(批准号:51672101,51602122)和中国航空科学基金会(批准号:201430R4001)资助的课题.

摘要: 准确测量和分析SiC纤维增强Ti合金复合材料(SiCf/Ti)中残余应力状态对优化复合材料的成型工艺和理解其失效模式具有重要意义,但其残余应力的实验测量和分析仍是一个挑战.石墨C涂层作为SiC纤维与Ti17基体合金之间必需的扩散障涂层,承载了由纤维与基体之间热不匹配引入的残余应力.本文采用显微拉曼光谱法对比测量纤维表面C涂层在复合材料中和去掉基体无应力态下G峰的峰位,通过石墨C涂层应力态下峰位移动计算出SiCf/C/Ti17复合材料中SiC纤维受到~705.0 MPa的残余压应力.采用X射线衍射方法测量了不同方向上该复合材料中基体钛合金的晶面间距以获取其空间应变,根据三轴应力模型分析了复合材料中基体钛合金沿轴向方向的残余应力为~701.3 MPa的张应力,并通过线性弹性理论转化为SiC纤维的残余压应力为~759.4 MPa.两种测试方法都确定了SiC纤维在成型过程中受到残余压应力,且获得的应力值较为接近,都可以用于对SiCf/Ti复合材料的残余应力测量.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回