搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像

刘淑倩 张海燕 张辉 朱文发 陈祎婷 刘雅洁

引用本文:
Citation:

融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像

刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁

Ultrasonic phase shift migration imaging of wrinkled defects in composite materials fused with circular statistical vectors

Liu Shu-Qian, Zhang Hai-Yan, Zhang Hui, Zhu Wen-Fa, Chen Yi-Ting, Liu Ya-Jie
PDF
HTML
导出引用
  • 超声波的相位变化携带着组织结构的重要信息, 通过相位加权可提高超声图像的清晰度. 针对褶皱散射回波微弱、受噪声影响大、时域修正成像耗时长等问题, 提出一种基于相位虚部相干因子的频域相干成像方法. 首先提取波场信号中的相位信息, 然后采用环形统计获取相位虚部矩阵, 通过相位虚部矩阵与相位迁移成像(phase shift migration, PSM)中的原频域矩阵相乘构建相位虚部相干因子(phase imaginary coherence factor, PICF), 将相位虚部相干因子引入相位迁移成像, 并对各层迁移波场进行修正, 通过频域信号相乘恢复纤维纹理信息. 对厚度为18 mm的碳玻纤维复合材料板进行检测, 实验结果表明: 未加权的相位迁移成像在10 mm深度以后的纤维铺层信息丢失, 无法检测出深层区域的缺陷; 用PICF加权后PSM成像可检测出位于11, 15, 16 mm处的3个纤维褶皱, 褶皱缺陷成像清晰度和纹理细致度均得到提高, 褶皱角度的检测误差约为10%, 并且成像耗时仅为1.5 s, 运算效率比时域全聚焦成像(total focusing method, TFM)至少提高8.67倍.
    Ultrasonic phase changes carry critical information about tissue structures, and phase weighting can enhance the sharpness of ultrasonic images. Addressed here are challenges, such as the faint scattering echoes from folds, substantial noise interference, and the lengthy processing time involved in time-domain corrected imaging. Processed in this work is a frequency-domain coherent imaging method based on the coherence factor of the phase imaginary part. Firstly, the phase information in the wavefield signal is extracted, and then the phase imaginary part matrix is extracted by using circular statistics. Subsequent construction of the phase imaginary coherence factor (PICF) involves multiplying this matrix with the original frequency-domain matrix used in phase shift migration (PSM) imaging. By incorporating the PICF into phase migration imaging and adjusting the PICF of the migrating wavefield at each layer, fibre texture information can be efficiently recovered by frequency domain signal multiplication. In this paper, this technique is applied to the 18-mm-thick carbon-glass fiber composite boards. The experimental outcomes indicate that without PICF weighting, phase shift imaging loses the fiber layout information at depths exceeding 10 mm and cannot detect defects in deeper areas. The PICF-weighted PSM imaging identifies three fibre folds with depths of 11 mm, 15 mm and 16 mm, respectively. This method improves the imaging clarity and textural detail of folding defects, while maintaining a detection error of about 10% for folding angles. The imaging time is only 1.5 s, and its computational efficiency is at least 8.67 times that of time-domain TFM imaging.
      通信作者: 张海燕, hyzh@shu.edu.cn ; 张辉, huizhang@sues.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12374443, 12174245, 12104290)资助的课题.
      Corresponding author: Zhang Hai-Yan, hyzh@shu.edu.cn ; Zhang Hui, huizhang@sues.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374443, 12174245, 12104290).
    [1]

    Teng G Y, Zhou X J, Yang C L, Zeng X 2018 Opt. Prec. Eng. 26 3108Google Scholar

    [2]

    Mukhopadhyay S, Jones M I, Hallett S R 2015 Compos. Pt. A-Appl. Sci. Manuf. 73 132Google Scholar

    [3]

    Gigante V, Aliotta L, Phuong V T, Coltelli M B, Cinelli P, Lazzeri A 2017 Compos. Sci. Technol. 152 129Google Scholar

    [4]

    Kulkarni P, Mali K D, Singh S 2020 Compos. Pt. A-Appl. Sci. Manuf. 137 106013Google Scholar

    [5]

    Xie N B, Smith R A, Mukhopadhyay S, Hallett S R 2018 Mater. Des. 140 7Google Scholar

    [6]

    Liu D, Fleck N A, Sutcliffe M F 2004 J. Mech. Phys. Solids 52 1481Google Scholar

    [7]

    Wang Z, Yang C L, Zhou X J, Teng Y H 2019 Russ. J. Nondestr. Test. 55 192Google Scholar

    [8]

    陈越超, 周晓军, 杨辰龙, 李钊, 郑慧峰 2015 农业机械学报 46 372Google Scholar

    Chen Y C, Zhou X J, Yang C L, Li Z, Zheng H F 2015 Trans. Chin. Soc. Agricult. Machin. 46 372Google Scholar

    [9]

    Cruza J F, Camacho J 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1581Google Scholar

    [10]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 物理学报 70 114301Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 114301Google Scholar

    [11]

    Zhang H Y, Ren Y, Song J X, Zhu Q, Ma X F 2021 J. Compos. Mater. 55 4633Google Scholar

    [12]

    Liu Z H, Chen L, Zhu Y P, Liu X Y, Lu Z J, He C F 2024 Ultrasonics 141 107321Google Scholar

    [13]

    Olofsson T 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2522Google Scholar

    [14]

    Skjelvareid M H, Olofsson T, Birkelund Y, Larsen Y 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1037Google Scholar

    [15]

    Wang Y D, Zheng C C, Peng H 2019 Comput. Biol. Med. 108 249Google Scholar

    [16]

    Yang C, Jiao Y, Jiang T Y, Xu Y W, Cui Y Y 2020 Appl. Sci. Basel 10 2250

    [17]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 958Google Scholar

    [18]

    Cruza J F, Camacho J, Fritsch C 2017 NDT E. Int. 87 31Google Scholar

    [19]

    Prado V T, Higuti R T, Kitano C, Martínez-Graullera O 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1204Google Scholar

    [20]

    Chen Y, Xiong Z H, Kong Q R, Ma X X, Chen M, Lu C 2023 Ultrasonics 128 106856Google Scholar

    [21]

    Nelson L J, Smith R A, Mienczakowski M 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 108Google Scholar

    [22]

    Smith R A 2007 Mater. Eval. 65 697

    [23]

    Garcia D, Le Tarnec L, Muth S, Montagnon E, Porée J, Cloutier G 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 1853Google Scholar

    [24]

    Ji K P, Zhao P, Zhuo C J, Jin H R, Chen M, Chen J, Ye S, Fu J Z 2022 Mech. Syst. Signal Proc. 174 109114Google Scholar

    [25]

    Lukomski T 2016 Ultrasonics 70 241Google Scholar

    [26]

    Schleicher J, Costa J C, Novais A 2008 Geophysics 73 S219Google Scholar

    [27]

    Pain D, Drinkwater B W 2013 J. Nondestruct. Eval. 32 215Google Scholar

    [28]

    Smith R A, Nelson L J, Mienczakowski M J, Wilcox P D 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 231Google Scholar

  • 图 1  超声相控阵多层层合板介质模型

    Fig. 1.  Ultrasonic phased array multi-layer laminated plate media model.

    图 2  环形矢量 (a)集中分布的样本矢量; (b)散乱分布的样本矢量

    Fig. 2.  Circular vectors: (a) Centrally distributed sample vectors; (b) randomly distributed sample vectors.

    图 3  PICF-PSM算法流程图

    Fig. 3.  Flowchart of PICF-PSM algorithms.

    图 4  CFRP (a)健康试样I; (b)褶皱试样II; (c)褶皱试样III

    Fig. 4.  CFRP: (a) Healthy sample I; (b) wrinkled sample II; (c) wrinkled sample III.

    图 5  超声相控阵数据采集系统

    Fig. 5.  Ultrasonic phased array data acquisition system.

    图 6  试样II的第16阵元的短时傅里叶变换 (a) fc = 2.5 MHz; (b) fc = 5 MHz

    Fig. 6.  Short-time Fourier transform of the 16th element of sample II: (a) fc = 2.5 MHz; (b) fc = 5 MHz.

    图 7  试样I成像方法对比 (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM标注

    Fig. 7.  Comparison of imaging methods for sample I: (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM annotation diagram.

    图 8  试样II成像方法对比 (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM标注

    Fig. 8.  Comparison of imaging methods for sample II: (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM annotation diagram.

    图 9  试样III成像方法对比 (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM标注

    Fig. 9.  Comparison of imaging methods for sample III: (a) TFM; (b) PSM; (c) PICF-PSM; (d) PICF-PSM annotation diagram.

    图 10  不同成像方法的清晰度评价

    Fig. 10.  Definition evaluation of different methods in frequency domain.

    表 1  材料参数

    Table 1.  Parameters of materials.

    试样 褶皱深度/mm 褶皱角度/(°)
    健康试样I 无褶皱
    褶皱试样II 16 15.2
    褶皱试样III 11 12.6
    15 12.4
    下载: 导出CSV

    表 2  相控阵探头参数

    Table 2.  Parameters of phased array probes.

    参数 探头A 探头B
    阵元个数 32 32
    阵元间隔/mm 1 1
    阵元宽度/mm 0.9 0.9
    中心频率/MHz 5 2.5
    激励电源/V 70 70
    采样频率/MHz 50 50
    激励信号 5个周期的高斯正弦波 5个周期的高斯正弦波
    激励方式 纵波 纵波
    下载: 导出CSV

    表 3  PICF-PSM成像的褶皱角误差

    Table 3.  Errors of samples with wrinkles in PICF-PSM imaging.

    褶皱试样实际褶皱
    角度/(°)
    PICF-PSM检测
    角度/(°)
    误差/%
    试样II15.216.69.22
    试样III12.614.011.1
    12.413.710.48
    下载: 导出CSV

    表 4  不同成像算法计算耗时

    Table 4.  Calculation time of different imaging algorithms.

    成像方法 计算时间/s
    时域TFM13.0
    频域PSM1.3
    PICF-PSM1.5
    下载: 导出CSV
  • [1]

    Teng G Y, Zhou X J, Yang C L, Zeng X 2018 Opt. Prec. Eng. 26 3108Google Scholar

    [2]

    Mukhopadhyay S, Jones M I, Hallett S R 2015 Compos. Pt. A-Appl. Sci. Manuf. 73 132Google Scholar

    [3]

    Gigante V, Aliotta L, Phuong V T, Coltelli M B, Cinelli P, Lazzeri A 2017 Compos. Sci. Technol. 152 129Google Scholar

    [4]

    Kulkarni P, Mali K D, Singh S 2020 Compos. Pt. A-Appl. Sci. Manuf. 137 106013Google Scholar

    [5]

    Xie N B, Smith R A, Mukhopadhyay S, Hallett S R 2018 Mater. Des. 140 7Google Scholar

    [6]

    Liu D, Fleck N A, Sutcliffe M F 2004 J. Mech. Phys. Solids 52 1481Google Scholar

    [7]

    Wang Z, Yang C L, Zhou X J, Teng Y H 2019 Russ. J. Nondestr. Test. 55 192Google Scholar

    [8]

    陈越超, 周晓军, 杨辰龙, 李钊, 郑慧峰 2015 农业机械学报 46 372Google Scholar

    Chen Y C, Zhou X J, Yang C L, Li Z, Zheng H F 2015 Trans. Chin. Soc. Agricult. Machin. 46 372Google Scholar

    [9]

    Cruza J F, Camacho J 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1581Google Scholar

    [10]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 物理学报 70 114301Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 114301Google Scholar

    [11]

    Zhang H Y, Ren Y, Song J X, Zhu Q, Ma X F 2021 J. Compos. Mater. 55 4633Google Scholar

    [12]

    Liu Z H, Chen L, Zhu Y P, Liu X Y, Lu Z J, He C F 2024 Ultrasonics 141 107321Google Scholar

    [13]

    Olofsson T 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2522Google Scholar

    [14]

    Skjelvareid M H, Olofsson T, Birkelund Y, Larsen Y 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1037Google Scholar

    [15]

    Wang Y D, Zheng C C, Peng H 2019 Comput. Biol. Med. 108 249Google Scholar

    [16]

    Yang C, Jiao Y, Jiang T Y, Xu Y W, Cui Y Y 2020 Appl. Sci. Basel 10 2250

    [17]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 958Google Scholar

    [18]

    Cruza J F, Camacho J, Fritsch C 2017 NDT E. Int. 87 31Google Scholar

    [19]

    Prado V T, Higuti R T, Kitano C, Martínez-Graullera O 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1204Google Scholar

    [20]

    Chen Y, Xiong Z H, Kong Q R, Ma X X, Chen M, Lu C 2023 Ultrasonics 128 106856Google Scholar

    [21]

    Nelson L J, Smith R A, Mienczakowski M 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 108Google Scholar

    [22]

    Smith R A 2007 Mater. Eval. 65 697

    [23]

    Garcia D, Le Tarnec L, Muth S, Montagnon E, Porée J, Cloutier G 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 1853Google Scholar

    [24]

    Ji K P, Zhao P, Zhuo C J, Jin H R, Chen M, Chen J, Ye S, Fu J Z 2022 Mech. Syst. Signal Proc. 174 109114Google Scholar

    [25]

    Lukomski T 2016 Ultrasonics 70 241Google Scholar

    [26]

    Schleicher J, Costa J C, Novais A 2008 Geophysics 73 S219Google Scholar

    [27]

    Pain D, Drinkwater B W 2013 J. Nondestruct. Eval. 32 215Google Scholar

    [28]

    Smith R A, Nelson L J, Mienczakowski M J, Wilcox P D 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 231Google Scholar

  • [1] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略. 物理学报, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [2] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] 张海燕, 徐心语, 马雪芬, 朱琦, 彭丽. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法. 物理学报, 2022, 71(7): 074302. doi: 10.7498/aps.71.20212009
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [6] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示. 物理学报, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [8] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [9] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [10] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [11] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性. 物理学报, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [12] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [13] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [14] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [15] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [16] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [17] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [18] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究. 物理学报, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [19] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  1528
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-07-28
  • 上网日期:  2024-08-07
  • 刊出日期:  2024-09-05

/

返回文章
返回