搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏氟乙烯基复合材料储能特性优化策略

查俊伟 查磊军 郑明胜

引用本文:
Citation:

聚偏氟乙烯基复合材料储能特性优化策略

查俊伟, 查磊军, 郑明胜

Optimization strategies for energy storage properties of polyvinylidene fluoride composites

Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng
PDF
HTML
导出引用
  • 介质电容器具有充放电速率快、低损耗以及柔性易加工等优点, 广泛应用于电子电力系统中的关键储能器件, 但介质电容器储能密度较低, 难以适用于现阶段电气工程更高的应用需求, 聚偏氟乙烯(PVDF)基聚合物因具有较高的介电常数与较高的击穿强度得到广泛关注, 因此本文着重介绍了以PVDF为基体的储能复合材料, 归纳和讨论包括介电常数、击穿强度和充放电效率3个提高储能密度的机理及其优化策略. 最后对高储能PVDF基复合材料现阶段存在的问题以及将来所需要研究的重点进行总结与展望.
    Dielectric capacitors have been widely used in crucial energy storage systems of electronic power systems because of their advantages such as fast charge discharge rates, long cycle lifetimes, low losses, and flexible and convenient processingc. However, the dielectric capacitors have lower energy storage densities than electrochemical energy storage devices, which makes them difficult to meet higher application requirements for electrical engineering at the present stage. Polyvinylidene fluoride (PVDF) based polymers show great potential in achieving improved energy storage properties, which is attributed to their high dielectric constants and high breakdown strengths. This work systematically reviews PVDF-based nanocomposites for energy storage applications. Dielectric constant, breakdown strength and charge discharge efficiency are three main parameters related to energy storage properties, which are proposed to discuss their mechanisms of action and optimization strategies. Finally, the key scientific problems of PVDF-based high energy storage composites are summarized and considered, and the future development trend of dielectric capacitors is also prospected.
      通信作者: 查俊伟, zhajw@ustb.edu.cn
      作者简介:
      查俊伟, 北京科技大学教授, 博导, 国家优秀青年科学基金获得者, 北京市科技新星计划及香江学者计划入选者, IET Fellow, IEEE Senior Member, 获2019年教育部自然科学一等奖及2021中国复合材料学会青年科学家奖. 长期从事电介质储能材料、绝缘导热、智能柔性电工材料等领域的应用基础研究工作, 在Adv MaterEnergy Environm Sci.等期刊共发表论文160篇, 其中SCI论文120余篇, 他引6800余次; 已授权发明专利13项; 合著英文书籍4部, 中文书籍1部. 现担任IET Nanodielectrics期刊主题编辑以及Energy & Environmental MaterialsChinese Physics LettersChinese Physics B、《物理学报》和《物理》等多个期刊客座主编、青年编委, CIGRE WG D1.73委员, IEEE/DEIS纳米电介质技术委员会委员, 中国复合材料学会介电高分子复合材料与应用专委会秘书长、青工委执行委员, 中国电工技术学会储能系统与装备专委会委员、工程电介质专委会委员及青工委先进储能科学与应用学组副主任等
    • 基金项目: 国家自然科学基金(批准号: 51977114)资助的课题.
      Corresponding author: Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51977114).
    [1]

    Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar

    [2]

    Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar

    [3]

    Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar

    [4]

    Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar

    [5]

    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar

    [6]

    Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar

    [7]

    Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar

    [8]

    Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar

    [9]

    Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar

    [10]

    Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar

    [11]

    Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar

    [12]

    Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar

    [13]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [14]

    Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar

    [15]

    Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar

    [16]

    Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar

    [17]

    Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar

    [18]

    Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar

    [19]

    Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar

    [20]

    Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar

    [21]

    Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [22]

    Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar

    [23]

    Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar

    [24]

    Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar

    [25]

    Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar

    [26]

    Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar

    [27]

    Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar

    [28]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [29]

    Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar

    [30]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [31]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [32]

    Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [33]

    Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar

    [34]

    Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar

    [35]

    Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar

    [36]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [37]

    王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 物理学报 69 217702Google Scholar

    Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar

    [38]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar

    [40]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [41]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [42]

    Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar

    [43]

    Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar

    [44]

    Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar

    [45]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar

    [46]

    He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar

    [47]

    Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar

    [48]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [49]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [50]

    Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar

    [51]

    Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar

    [52]

    Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar

    [53]

    Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar

    [54]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217

    [55]

    Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar

    [56]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [57]

    Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar

    [58]

    Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar

    [59]

    Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar

    [60]

    Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150

    [61]

    Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar

    [62]

    Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar

    [63]

    Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar

    [64]

    Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar

    [65]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [66]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [67]

    Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [68]

    Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar

    [69]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [70]

    Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar

    [71]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [72]

    Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar

    [73]

    Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [74]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [75]

    Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar

    [76]

    Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar

    [77]

    Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar

    [78]

    Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar

    [79]

    Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar

    [80]

    Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar

    [81]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar

    [82]

    Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar

  • 图 1  介质电容器的应用

    Fig. 1.  Application of Dielectric Capacitors.

    图 2  D-E曲线示意图[14]

    Fig. 2.  Schematic illustration of electric displacement (D)-electric field (E) loop [14].

    图 3  不同铁电结构电介质及其D-E曲线[16]

    Fig. 3.  Dielectrics with different ferroelectric structures and their D-E curves16].

    图 4  沿c轴观察的PVDF四种相的单胞[28]

    Fig. 4.  Unit cells of four PVDF phases observed along the c-axis 28].

    图 5  (a) NH2-GNDs/RGO/PVDF三元复合物制备流程; (b)不同PVDF基复合材料介电常数[43]

    Fig. 5.  (a) NH2-GNDs/RGO/PVDF ternary complex preparation process; (b) different PVDF-based composite dielectric constants[43].

    图 6  (a) PDA表面改性减少漏电流示意图[50]; (b)不同小分子改性剂改性后击穿强度[52]

    Fig. 6.  (a) schematic diagram of PDA surface modification to reduce leakage current [50]; (b) breakdown strength after modification with different small molecule modifiers [52].

    图 7  (a) BTO@TO纳米纤维及其与聚合物复合材料示意图与元素图; (b) PVDF基复合材料能量密度; (c)P(VDF-HFP)基复合材料能量密度[55,56]

    Fig. 7.  (a) schematic and elemental diagrams of BTO@TO nanofibers and their composites with polymers; (b) energy density of PVDF-based composites; (c)energy density of P(VDF-HFP)-based composites [55,56].

    图 8  复合材料阻挡效应模型示意图

    Fig. 8.  Schematic diagram of barrier effect model of composite material

    图 9  (a) PVDF/ P(VDF-TrFE-CFE)共混膜的储能密度与充放电效率[69]; (b)不同钛酸锶钡含量下单层膜与3层膜介电损耗; (c) TNF介电损耗降低示意图[76]

    Fig. 9.  (a) Energy storage density and charge/discharge efficiency of PVDF/ P(VDF-TrFE-CFE) blended films[69]; (b) dielectric loss of monolayer and trilayer films with different barium strontium titanate content; (c) schematic diagram of TNF dielectric loss reduction [76]

  • [1]

    Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar

    [2]

    Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar

    [3]

    Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar

    [4]

    Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar

    [5]

    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar

    [6]

    Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar

    [7]

    Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar

    [8]

    Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar

    [9]

    Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar

    [10]

    Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar

    [11]

    Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar

    [12]

    Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar

    [13]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [14]

    Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar

    [15]

    Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar

    [16]

    Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar

    [17]

    Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar

    [18]

    Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar

    [19]

    Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar

    [20]

    Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar

    [21]

    Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [22]

    Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar

    [23]

    Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar

    [24]

    Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar

    [25]

    Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar

    [26]

    Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar

    [27]

    Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar

    [28]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [29]

    Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar

    [30]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [31]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [32]

    Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [33]

    Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar

    [34]

    Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar

    [35]

    Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar

    [36]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [37]

    王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 物理学报 69 217702Google Scholar

    Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar

    [38]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar

    [40]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [41]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [42]

    Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar

    [43]

    Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar

    [44]

    Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar

    [45]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar

    [46]

    He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar

    [47]

    Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar

    [48]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [49]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [50]

    Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar

    [51]

    Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar

    [52]

    Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar

    [53]

    Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar

    [54]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217

    [55]

    Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar

    [56]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [57]

    Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar

    [58]

    Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar

    [59]

    Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar

    [60]

    Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150

    [61]

    Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar

    [62]

    Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar

    [63]

    Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar

    [64]

    Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar

    [65]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [66]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [67]

    Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [68]

    Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar

    [69]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [70]

    Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar

    [71]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [72]

    Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar

    [73]

    Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [74]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [75]

    Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar

    [76]

    Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar

    [77]

    Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar

    [78]

    Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar

    [79]

    Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar

    [80]

    Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar

    [81]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar

    [82]

    Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展. 物理学报, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [5] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [6] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [7] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [8] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [10] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [11] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [12] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性. 物理学报, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [13] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [15] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [16] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [17] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [18] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究. 物理学报, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [19] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究. 物理学报, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [20] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
计量
  • 文章访问数:  7802
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-11-10
  • 上网日期:  2022-11-28
  • 刊出日期:  2023-01-05

/

返回文章
返回