搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高储能密度铁电聚合物纳米复合材料研究进展

沈忠慧 江彦达 李宝文 张鑫

引用本文:
Citation:

高储能密度铁电聚合物纳米复合材料研究进展

沈忠慧, 江彦达, 李宝文, 张鑫

Reseach progress of ferroelectric polymer nanocomposites with high energy storage density

Shen Zhong-Hui, Jiang Yan-Da, Li Bao-Wen, Zhang Xin
PDF
HTML
导出引用
  • 介电电容器具有超高功率密度、低损耗以及高工作电压等优点, 是广泛应用于电子电力系统的关键储能器件. 铁电聚合物是发展高储能密度电介质薄膜材料的理想选择, 而基于铁电聚合物的纳米复合材料则兼具了聚合物的高击穿场强、柔性、易加工等特点以及陶瓷的高介电性能, 是近年来电介质储能材料研究的前沿与热点. 本文首先介绍了铁电聚合物材料的制备、铁电性能以及极化特性的调控方法, 随后总结了铁电聚合物纳米复合材料中纳米填料、复合结构以及界面三个关键调控策略对复合材料介电与储能性能的影响, 并探讨了基于相场方法的纳米复合材料中介电与储能特性的微观机制研究, 最后对高储能密度铁电聚合物纳米复合材料现存问题以及未来发展方向进行了总结与展望.
    Electrostatic capacitors based on dielectrics delivering an ultrahigh power density, low loss and high operating voltage, are widely used in energy storage devices for modern electronic and electrical systems. Dielectric polymers, especially ferroelectric polymers, are preferable for an energy storage medium in film capacitors due to their superiority in ultrahigh breakdown strength, low mass density, flexibility, and easy fabrication process. Ferroelectric polymer nanocomposites combining the advantageous properties of ferroelectric polymer matrix and high dielectric constant of ceramic fillers, show great potential applications in achieving superior energy storage performances and have aroused substantial academic interest. This review focuses on the recent research progress of high-energy-density ferroelectric polymer nanocomposites. First, the synthesis and properties of PVDF-based ferroelectric polymers are introduced. Second, the effects of nanofillers, composite structures and interfaces on the dielectric and energy storage properties of ferroelectric polymer nanocomposites are summarized. Third, the underline mechanism of dielectric and energy storage behaviors in ferroelectric nanocomposites are discussed in the aspect of phase-field simulation. Last, the existing challenges and future directions of ferroelectric polymer nanocomposites with high energy storage density are summarized and prospected.
      通信作者: 张鑫, zhang-xin@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51802237, 52072280, 41180991)、中国科学技术协会青年人才托举工程(批准号: 2018QNRC001)和中央高校基本科研业务费(批准号: 193201002, 183101005, 182401004)资助的课题
      Corresponding author: Zhang Xin, zhang-xin@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802237, 52072280, 41180991), the Young Elite Scientists Sponsorship Program by CAST, China (Grant No. 2018QNRC001), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 193201002, 183101005, 182401004)
    [1]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [2]

    Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260Google Scholar

    [3]

    成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar

    Chen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar

    [4]

    Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar

    [5]

    Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433Google Scholar

    [6]

    Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275Google Scholar

    [7]

    Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939Google Scholar

    [8]

    Kawa H 1969 Jpn. J. Appl. Phys. 8 975Google Scholar

    [9]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [10]

    Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683Google Scholar

    [11]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [12]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [13]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [14]

    Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [15]

    Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101Google Scholar

    [16]

    Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162Google Scholar

    [17]

    Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360Google Scholar

    [18]

    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [19]

    Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133Google Scholar

    [20]

    Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901Google Scholar

    [21]

    Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176Google Scholar

    [22]

    Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190Google Scholar

    [23]

    Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601Google Scholar

    [24]

    Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468Google Scholar

    [25]

    Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169Google Scholar

    [26]

    Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105Google Scholar

    [27]

    Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494Google Scholar

    [28]

    Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222Google Scholar

    [29]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [30]

    Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535Google Scholar

    [31]

    Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [32]

    Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49Google Scholar

    [33]

    Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar

    [34]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [35]

    Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187Google Scholar

    [36]

    Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1Google Scholar

    [37]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [38]

    Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017Google Scholar

    [39]

    Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar

    [40]

    Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [41]

    Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar

    [42]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [43]

    Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [44]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [45]

    Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965Google Scholar

    [46]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [47]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [48]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [49]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202Google Scholar

    [50]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [51]

    Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722Google Scholar

    [52]

    Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar

    [53]

    Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar

    [54]

    Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624Google Scholar

    [55]

    Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar

    [56]

    Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244Google Scholar

    [57]

    Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990Google Scholar

    [58]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [59]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217Google Scholar

    [60]

    Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar

    [61]

    Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127Google Scholar

    [62]

    Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102Google Scholar

    [63]

    Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115

    [64]

    Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar

    [65]

    Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [66]

    Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573Google Scholar

    [67]

    Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901Google Scholar

  • 图 1  D-E曲线示意图

    Fig. 1.  Schematic illustration of electric displacement (D)-electric field (E) loop.

    图 2  (a) PVDF晶体链构象示意图[10]; (b) 沿c轴观察的PVDF晶体四个不同相的单胞[11]

    Fig. 2.  (a) Schematic chain conformations[10]; (b) unit cells of PVDF crystals with four different phases viewed along c-axis[11].

    图 3  D-E曲线示意图(阴影区域代表释放的能量密度) (a) 铁电; (b) 弛豫铁电; (c) 反铁电

    Fig. 3.  Schematic D-E hysteresis loops for (a) normal ferroelectric; (b) relaxor ferroelectric; (c) antiferroelectric behaviors. The shaded areas represent the released energy density.

    图 4  (a) PVDF和P(VDF-CTFE)-g-PS接枝共聚物的极化机制示意图; (b) P(VDF-CTFE)和P(VDF-CTFE)-g-PS接枝共聚物的D-E曲线[21]; (c) PVDF的压折工艺图解; (d) 压折和拉伸PVDF薄膜储能性能的比较[30]

    Fig. 4.  (a) Schematic models of polarization mechanisms for PVDF and P(VDF-CTFE)-g-PS; (b) D-E loops for the hot-pressed and stretched films of P(VDF-CTFE) and P(VDF-CTFE)-g-PS graft copolymers[21]; (c) schematic demonstration of pressed-and-folding technique for PVDF; (d) a comparison of electric energy storage properties of pressed-and-folded and stretched films[30].

    图 5  (a) PEI中超细纳米颗粒的体积分数与介电常数的关系[33]; (b) 不同取向的纳米纤维填料对介电常数的影响[37]; (c) 不同维度的Al2O3与c-BCB复合后的击穿场强与温度稳定性[40]; (d) PVDF/Ca2Nb3O10复合材料的击穿场强和储能密度[41]

    Fig. 5.  (a) Relationship between volume fraction of ultrafine nanoparticles and dielectric constant in PEI[33]; (b) influence of nanofiber fillers with different orientations on dielectric constant[37]; (c) breakdown field strength and temperature stability of Al2O3 with different dimensions and c-BCB composites[40]; (d) breakdown field strength and energy storage density of PVDF/Ca2Nb3O10 composites[41].

    图 6  (a) P(VDF-HFP)/BaTiO3复合材料中不同梯度分布的示意图[42]; (b) BNNS和BZT填料互穿结构的示意图[43]; (c) BN和BT共混填料的制备过程和电镜图[44]

    Fig. 6.  (a) Schematic diagram of different gradient distributions in P(VDF-HFP)/BaTiO3 composites[42]; (b) schematic diagram of interpenetrating structure of BNNS and BZT fillers[43]; (c) preparation process and electron micrograph of BN and BT blend filler[44].

    图 7  (a) 三明治结构复合薄膜的示意图和断面电镜图[46]; (b) 分别掺有BNNS和BST的叠层结构示意图和电镜图[47]; (c) 多层复合材料的制备流程图和示意图[48]

    Fig. 7.  (a) Schematic diagram and sectional electron microscope of sandwich composite film[46]; (b) schematic diagram and electron micrograph of laminated structure doped with BNNS and BST respectively[47]; (c) preparation flow chart and schematic diagram of multilayer composite materials[48].

    图 8  (a) GMA功能化PVDF-HFP的流程图[56]; (b) PTFEMA, PHFBMA和PDFHM原位聚合的示意图和电镜图[57]; (c) BaTiO3@TiO2多级结构的电镜图[58]; (d) BaTiO3@TiO2@Al2O3同轴纤维的电镜图和示意图[59]

    Fig. 8.  (a) Flow chart of GMA functionalized PVDF-HFP[56]; (b) schematic diagram and electron micrograph of in-situ polymerization of PTFEMA, PHFBMA and PDFHM[57]; (c) electron micrograph of BaTiO2@TiO2 multilevel structure[58]; (d) electron micrograph and schematic diagram of BaTiO3@TiO2@Al2O3 coaxial fiber[59].

    图 9  (a) 颗粒填料取向分布与介电常数的关系[62]; (b) 多物理场协同击穿的路径演化及能量分布[65]; (c) 不同填料种类的体积分数与击穿场强的关系[64]; (d) 空间电荷分布的示意图[67]

    Fig. 9.  (a) Relationship between orientation distribution of particulate filler and dielectric constant[62]; (b) path evolution and energy distribution of multi-physical field cooperative breakdown[65]; (c) the relationship between the volume fraction of different fillers and the breakdown field strength[64]; (d) schematic diagram of space charge distribution[67].

  • [1]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [2]

    Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260Google Scholar

    [3]

    成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar

    Chen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar

    [4]

    Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar

    [5]

    Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433Google Scholar

    [6]

    Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275Google Scholar

    [7]

    Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939Google Scholar

    [8]

    Kawa H 1969 Jpn. J. Appl. Phys. 8 975Google Scholar

    [9]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [10]

    Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683Google Scholar

    [11]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [12]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [13]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [14]

    Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [15]

    Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101Google Scholar

    [16]

    Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162Google Scholar

    [17]

    Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360Google Scholar

    [18]

    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [19]

    Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133Google Scholar

    [20]

    Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901Google Scholar

    [21]

    Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176Google Scholar

    [22]

    Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190Google Scholar

    [23]

    Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601Google Scholar

    [24]

    Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468Google Scholar

    [25]

    Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169Google Scholar

    [26]

    Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105Google Scholar

    [27]

    Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494Google Scholar

    [28]

    Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222Google Scholar

    [29]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [30]

    Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535Google Scholar

    [31]

    Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [32]

    Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49Google Scholar

    [33]

    Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar

    [34]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [35]

    Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187Google Scholar

    [36]

    Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1Google Scholar

    [37]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [38]

    Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017Google Scholar

    [39]

    Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar

    [40]

    Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [41]

    Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar

    [42]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [43]

    Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [44]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [45]

    Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965Google Scholar

    [46]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [47]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [48]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [49]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202Google Scholar

    [50]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [51]

    Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722Google Scholar

    [52]

    Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar

    [53]

    Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar

    [54]

    Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624Google Scholar

    [55]

    Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar

    [56]

    Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244Google Scholar

    [57]

    Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990Google Scholar

    [58]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [59]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217Google Scholar

    [60]

    Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar

    [61]

    Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127Google Scholar

    [62]

    Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102Google Scholar

    [63]

    Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115

    [64]

    Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar

    [65]

    Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [66]

    Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573Google Scholar

    [67]

    Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901Google Scholar

  • [1] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [2] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [3] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略. 物理学报, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [4] 潘鹏晖, 吉鹏飞, 林根, 董希明, 赵晋晖. 飞秒激光加工熔融石英的理论和实验研究. 物理学报, 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [5] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [6] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [7] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [8] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [9] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系. 物理学报, 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [10] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [11] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [12] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [13] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [14] 武峥, 周嘉仪, 曹艺, 马柯, 贾艳敏, 张以河. 电泳辅助制备伪1-3陶瓷/聚合物压电复合材料. 物理学报, 2014, 63(2): 027701. doi: 10.7498/aps.63.027701
    [15] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [17] 尹桂来, 李建英, 李盛涛. 利用普适介电理论对银/氧化锌复合材料介电性能的研究. 物理学报, 2009, 58(6): 4219-4224. doi: 10.7498/aps.58.4219
    [18] 黄集权, 洪兰秀, 韩高荣, 翁文剑, 杜丕一. Fe-Ni-BaTiO3复合材料的介电行为及其机理研究. 物理学报, 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [19] 张华, 范滇元. 组合式钕玻璃片状激光放大器增益性能的动态模拟. 物理学报, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  14701
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-09-12
  • 上网日期:  2020-10-28
  • 刊出日期:  2020-11-05

/

返回文章
返回