搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构

许思维 王训四 沈祥

引用本文:
Citation:

结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构

许思维, 王训四, 沈祥

Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering

Xu Si-Wei, Wang Xun-Si, Shen Xiang
PDF
HTML
导出引用
  • 本文在固定Ga原子含量为8%的情况下, 结合高分辨率X射线光电子能谱和拉曼散射光谱对硫系玻璃GexGa8S92–x (x = 24%, 26.67%, 29.6%, 32%和36%)的结构进行了研究. 通过分析玻璃结构中各单元结构的演变情况, 发现玻璃内部网络结构主要为S原子桥接GeS4和GaS4四面体结构. 随着Ge含量的逐渐增大, S链状或环状结构单元迅速减少, 并消失于Ge26.67Ga8S65.33玻璃组分中; 而类乙烷结构S3Ge-GeS3中的Ge—Ge同极键和S3Ge/Ga-Ga/GeS3结构中的MM (Ge—Ge, Ga—Ga或Ge—Ga)同极键同时出现于Ge29.6Ga8S62.4玻璃中, 并且其结构数量随着Ge含量的增大而逐渐增加. 由此可以判定, 首先, 在硫系玻璃GexGa8S92–x结构中Ge和Ga原子均主要以4配位的形式出现, 而S原子则主要以2配位的形式出现. 其次, MM键的存在导致纳米相分离, 玻璃网络结构的有序化程度降低.
    In this paper, the structures of chalcogenide glasses GexGa8S92–x (x = 24%, 26.67%, 29.6%, 32% and 36%) at a fixed Ga atomic content of 8% are studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering spectra. In order to quantify the evolutions of the different structural units in GexGa8S92–x glasses, the number of double peaks in the Ge 3d, Ga 3d and S 2p spectra are determined by iterative fitting method, the binding energy and the full width at half maximum of each peak, and the relative ratio of the integral area of each decomposed peak to that of the whole area of the X-ray photoelectron spectroscopy are thus achieved. On the other hand, the Raman scattering spectra of GexGa8S92–x glass are decomposed into multiple Gaussians based on the structural units. We use the iterative method to simulate the position of peak center, full width at half maximum, and height of each Raman peak. By analyzing the evolution of each unit structure in the glasses, it is found that the network structure of glass network is mainly formed by S atom bridging the tetrahedral structure of GeS4 and GaS4. The S chains or rings structural units are formed in Ge24Ga8S68 glass, indicating that S atoms are in excess in the chemical composition of the glass, so there are enough S atoms around Ge and Ga atoms, forming heteropolar Ge—S and Ga—S bonds. With the gradual increase of Ge content, S chains or rings structure units rapidly disappear in Ge26.67Ga8S65.33 glass. The Ge—Ge homopolar bonds in the ethane-like structure S3Ge—GeS3 and the MM (Ge—Ge, Ga—Ga or Ge—Ga) homopolar bonds in the S3Ge/Ga—Ga/GeS3 structure simultaneous appear in the Ge29.6Ga8S62.4 glass, and the number of structures increases gradually with the increase of Ge content. This is mainly due to the insufficient number of S atoms in the Ge-Ga-S glass. Once S atoms are lacking, the excess Ge and Ga atoms can only combine with themselves to form the homopolar bond MM. It can be concluded below. Firstly, Ge and Ga atoms appear mainly in the form of 4-coordination, while S atoms occur mainly in the form of 2-coordination in the chalcogenide glasses of GexGa8S92–x. Secondly, the existence of MM bond leads the nanophase to separate, and the ordering degree of glass network structure to decrease .
      通信作者: 许思维, xusiwei1227@163.com
    • 基金项目: 国家自然科学基金(批准号: 62004067)和湖南省教育厅青年项目(批准号: 21B0620)资助的课题.
      Corresponding author: Xu Si-Wei, xusiwei1227@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62004067), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21B0620).
    [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp178–193

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp115–135

    [3]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [4]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [5]

    Kim Y, Saienga J, Martin S W 2006 J. Phys. Chem. B 110 16318Google Scholar

    [6]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [7]

    汪俊, 冯赞, 吴国林, 汪金晶, 焦凯, 王弦歌, 刘佳, 梁晓林, 徐铁松, 钟明辉, 肖晶, 赵浙明, 刘自军, 刘永兴, 王训四 2020 发光学报 41 1343Google Scholar

    Wang J, Feng Z, Wu G L, Wang J J, Jiao K, Wang X G, Liu J, Liang X L, Xu T S, Zhong M H, Xiao J, Zhao Z M, Liu Z J, Liu Y X, Wang X S 2020 Chin. J. Lumin. 41 1343Google Scholar

    [8]

    戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547Google Scholar

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547Google Scholar

    [9]

    任晶, 卢小送, 王鹏飞 2019 光子学报 48 1148007Google Scholar

    Ren J, Lu X S, Wang P F 2019 Acta Photonica Sin. 48 1148007Google Scholar

    [10]

    Yang Z, Wang R P, Chen Y M, Li Q L, Shen X, Xu T F 2020 Opt. Mater. 100 109677Google Scholar

    [11]

    Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B, Chen G R 2011 J. Appl. Phys. 109 033105Google Scholar

    [12]

    Golovchak R, Shpotyuk O, Kozyukhin S, Shpotyuk M, Kovalskiy A, Jain H 2011 J. Non-Cryst. Solids 357 1797Google Scholar

    [13]

    Zhu E W, Liu Y X, Sun X, Yin G L, Jiao Q, Dai S X, Lin C G 2019 J. Non-Cryst. Solids 1 100015Google Scholar

    [14]

    Bureau B, Troles J, Floch M L, Guenot P, Smektala F, Lucas J 2003 J. Non-Cryst. Solids 319 145Google Scholar

    [15]

    Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Anne M L B, Charrier J, Guin J P, Moréac A 2011 Int. J. Appl. Ceram. Technol. 8 990Google Scholar

    [16]

    Pethes I, Chahal R, Nazabal V, Prestipino C, Trapananti A, Michalik S, Jóvári P 2016 J. Phys. Chem. B 120 9204Google Scholar

    [17]

    Golovchak R, Kovalskiy A, Miller A C, Jain H, Shpotyuk O 2007 Phys. Rev. B 76 125208Google Scholar

    [18]

    Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller A C, Jain H 2009 J. Appl. Phys. 105 103704Google Scholar

    [19]

    Kondrat O, Holomb R, Csik A, Takats V, Veres M, Mitsa V 2017 Nanoscale Res. Lett. 12 149Google Scholar

    [20]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [21]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [22]

    Golovchak R, Calvez L, Petracovschi E, Bureau B, Savitskii D, Jain H 2013 Mater. Chem. Phys. 138 909Google Scholar

    [23]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [24]

    Wang K K, Wang W F, Lin C G, Shen X, Dai S X, Chen F F 2022 Ceram. Int. 48 11209Google Scholar

    [25]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 J. Am. Ceram. Soc. 96 125Google Scholar

    [26]

    Velmuzhov A P, Sukhanov M V, Tyurina E A, Plekhovich A D, Fadeeva D A, Ketkova L A, Churbanov M F, Shiryaev V S 2021 J. Non-Cryst. Solids 554 120615Google Scholar

    [27]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 Appl. Phys. A 112 939Google Scholar

    [28]

    Zhang W, Fu J, Shen X, Chen Y, Dai S X, Chen F, Li J, Xu T F 2013 J. Non-Cryst. Solids 377 191Google Scholar

    [29]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [30]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [31]

    Wang X F, Gu S X, Yu J G, Zhao X J, Tao H Z 2004 J. Solid State Commun. 130 459Google Scholar

    [32]

    Hannon A C, Aitken B G 1999 J. Non-Cryst. Solids 256–257 73Google Scholar

    [33]

    Masselin P, Coq D L, Cuisset A, Bychkov E 2012 Opt. Mater. Express 2 1768Google Scholar

    [34]

    Pauling L 1960 The Nature of the Chemical Bond (Ithaca: Cornell University Press) pp113–121

    [35]

    Xu Q, Yang X Y, Zhang M J, Wang R P 2019 Mater. Res. Express 6 085212Google Scholar

    [36]

    Golovchak R, Nazabal V, Bureau B, Oelgoetz J, Kovalskiy A, Jain H 2018 J. Non-Cryst. Solids 499 237Google Scholar

    [37]

    Srivastava C P, Van De Vondel D F, Van Der Kelen G P 1977 Inorg. Chim. Acta 23 L29Google Scholar

    [38]

    Pethes I, Nazabal V, Chahal R, Bureau B, Kaban I, Belin S, Jovari P 2016 J. Alloys Compd. 673 149Google Scholar

    [39]

    Sun Y H, Zhang Z, Yang Z, Niu L, Wu J, Wei T X, Yan K L, Sheng Y, Wang X S, Wang R P 2021 Opt. Mater. Express 11 2413Google Scholar

  • 图 1  GexGa8S92–x玻璃的拉曼散射光谱分峰拟合图

    Fig. 1.  Raman scattering spectra of GexGa8S92–x glasses and their decompositions.

    图 2  GexGa8S92-x 玻璃的 S 2 p 的XPS分解

    Fig. 2.  S 2 p spectra of GexGa8S92-x glasses and their decompositions.

    图 3  GexGa8S92–x 玻璃的Ge 3d 的XPS分解

    Fig. 3.  Ge 3d spectra of GexGa8S92–x glasses and their decompositions.

    图 4  GexGa8S92–x 玻璃的Ga 3d 的XPS分解

    Fig. 4.  Ga 3d spectra of GexGa8S92–x glasses and their decompositions.

    表 1  拉曼散射光谱分峰拟合中各个结构单元的相对比例

    Table 1.  Relative ratio of the different structural units derived from the decomposed Raman scattering spectra.

    S3Ge/Ga-Ga/GeS3
    /%
    S3Ge-GeS3
    /%
    Ge/GaS4
    (v2)/%
    GeS4 (CS)
    /%
    GeS4 (ES)
    /%
    GaS4 (F2)
    /%
    S3Ge-S-
    GeS3
    /%
    Sn chains
    /%
    Ge24Ga8S68009.4350.7612.7915.318.892.82
    Ge26.67Ga8S65.33008.2754.6912.8414.739.470
    Ge29.6Ga8S62.44.988.527.4847.3612.2211.218.230
    Ge32Ga8S609.0911.816.0445.2710.1310.617.050
    Ge36Ga8S5615.8913.314.6243.718.319.015.150
    下载: 导出CSV

    表 2  GexGa8S92–x 玻璃的Ge 3d, Ga 3d 和S 2p 的XPS的拟合参数

    Table 2.  The fitting parameters for the decomposed Ge 3d, Ga 3d and S 2p spectra of GexGa8S92–x glasses.

    Structural unit
    S-S-SS-S-Ge/GaGe/Ga -S-
    Ge/Ga
    GeS4Ge-Ge/Ga-related
    structure
    GaS4Ga-Ge/Ga-
    related
    structure
    Ge24Ga8S68BE/eV163.13162.26161.6630.5119.8719.56
    FWHM/eV1.111.031.131.170.980.98
    Content/%4.9819.1775.8510072.2527.75
    Ge26.67Ga8S65.33BE/eV162.13161.5830.4419.8619.58
    FWHM/eV1.121.081.131.021.18
    Content/%11.9788.0310061.9438.06
    Ge29.6Ga8S62.4BE/eV162.25161.6930.5629.6119.8819.56
    FWHM/eV1.171.091.111.111.051.06
    Content/%5.5494.4685.4114.5953.4146.59
    Ge32Ga8S60BE/eV161.5830.5829.8119.8919.51
    FWHM/eV1.091.080.990.890.86
    Content/%10080.9819.0244.0555.95
    Ge36Ga8S56BE/eV161.6630.4929.7219.8319.49
    FWHM/eV1.161.071.110.870.89
    Content/%10073.2626.7439.5360.47
    下载: 导出CSV
  • [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp178–193

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp115–135

    [3]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [4]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [5]

    Kim Y, Saienga J, Martin S W 2006 J. Phys. Chem. B 110 16318Google Scholar

    [6]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [7]

    汪俊, 冯赞, 吴国林, 汪金晶, 焦凯, 王弦歌, 刘佳, 梁晓林, 徐铁松, 钟明辉, 肖晶, 赵浙明, 刘自军, 刘永兴, 王训四 2020 发光学报 41 1343Google Scholar

    Wang J, Feng Z, Wu G L, Wang J J, Jiao K, Wang X G, Liu J, Liang X L, Xu T S, Zhong M H, Xiao J, Zhao Z M, Liu Z J, Liu Y X, Wang X S 2020 Chin. J. Lumin. 41 1343Google Scholar

    [8]

    戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547Google Scholar

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547Google Scholar

    [9]

    任晶, 卢小送, 王鹏飞 2019 光子学报 48 1148007Google Scholar

    Ren J, Lu X S, Wang P F 2019 Acta Photonica Sin. 48 1148007Google Scholar

    [10]

    Yang Z, Wang R P, Chen Y M, Li Q L, Shen X, Xu T F 2020 Opt. Mater. 100 109677Google Scholar

    [11]

    Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B, Chen G R 2011 J. Appl. Phys. 109 033105Google Scholar

    [12]

    Golovchak R, Shpotyuk O, Kozyukhin S, Shpotyuk M, Kovalskiy A, Jain H 2011 J. Non-Cryst. Solids 357 1797Google Scholar

    [13]

    Zhu E W, Liu Y X, Sun X, Yin G L, Jiao Q, Dai S X, Lin C G 2019 J. Non-Cryst. Solids 1 100015Google Scholar

    [14]

    Bureau B, Troles J, Floch M L, Guenot P, Smektala F, Lucas J 2003 J. Non-Cryst. Solids 319 145Google Scholar

    [15]

    Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Anne M L B, Charrier J, Guin J P, Moréac A 2011 Int. J. Appl. Ceram. Technol. 8 990Google Scholar

    [16]

    Pethes I, Chahal R, Nazabal V, Prestipino C, Trapananti A, Michalik S, Jóvári P 2016 J. Phys. Chem. B 120 9204Google Scholar

    [17]

    Golovchak R, Kovalskiy A, Miller A C, Jain H, Shpotyuk O 2007 Phys. Rev. B 76 125208Google Scholar

    [18]

    Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller A C, Jain H 2009 J. Appl. Phys. 105 103704Google Scholar

    [19]

    Kondrat O, Holomb R, Csik A, Takats V, Veres M, Mitsa V 2017 Nanoscale Res. Lett. 12 149Google Scholar

    [20]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [21]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [22]

    Golovchak R, Calvez L, Petracovschi E, Bureau B, Savitskii D, Jain H 2013 Mater. Chem. Phys. 138 909Google Scholar

    [23]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [24]

    Wang K K, Wang W F, Lin C G, Shen X, Dai S X, Chen F F 2022 Ceram. Int. 48 11209Google Scholar

    [25]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 J. Am. Ceram. Soc. 96 125Google Scholar

    [26]

    Velmuzhov A P, Sukhanov M V, Tyurina E A, Plekhovich A D, Fadeeva D A, Ketkova L A, Churbanov M F, Shiryaev V S 2021 J. Non-Cryst. Solids 554 120615Google Scholar

    [27]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 Appl. Phys. A 112 939Google Scholar

    [28]

    Zhang W, Fu J, Shen X, Chen Y, Dai S X, Chen F, Li J, Xu T F 2013 J. Non-Cryst. Solids 377 191Google Scholar

    [29]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [30]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [31]

    Wang X F, Gu S X, Yu J G, Zhao X J, Tao H Z 2004 J. Solid State Commun. 130 459Google Scholar

    [32]

    Hannon A C, Aitken B G 1999 J. Non-Cryst. Solids 256–257 73Google Scholar

    [33]

    Masselin P, Coq D L, Cuisset A, Bychkov E 2012 Opt. Mater. Express 2 1768Google Scholar

    [34]

    Pauling L 1960 The Nature of the Chemical Bond (Ithaca: Cornell University Press) pp113–121

    [35]

    Xu Q, Yang X Y, Zhang M J, Wang R P 2019 Mater. Res. Express 6 085212Google Scholar

    [36]

    Golovchak R, Nazabal V, Bureau B, Oelgoetz J, Kovalskiy A, Jain H 2018 J. Non-Cryst. Solids 499 237Google Scholar

    [37]

    Srivastava C P, Van De Vondel D F, Van Der Kelen G P 1977 Inorg. Chim. Acta 23 L29Google Scholar

    [38]

    Pethes I, Nazabal V, Chahal R, Bureau B, Kaban I, Belin S, Jovari P 2016 J. Alloys Compd. 673 149Google Scholar

    [39]

    Sun Y H, Zhang Z, Yang Z, Niu L, Wu J, Wei T X, Yan K L, Sheng Y, Wang X S, Wang R P 2021 Opt. Mater. Express 11 2413Google Scholar

  • [1] 朱孟龙, 杨俊, 董玉兰, 周源, 邵岩, 侯海良, 陈智慧, 何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究. 物理学报, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [2] 夏克伦, 管永年, 顾杰荣, 贾光, 仵苗苗, 沈祥, 刘自军. Ge20Se80–xTex 玻璃网络结构演变及理论带隙-玻璃性能评价. 物理学报, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [3] 许思维, 王训四, 沈祥. 元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响. 物理学报, 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [4] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [5] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [6] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [7] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [8] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [9] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [10] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [13] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数. 物理学报, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [14] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [15] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [16] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [17] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [18] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [19] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
计量
  • 文章访问数:  3757
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 修回日期:  2022-10-04
  • 上网日期:  2022-10-18
  • 刊出日期:  2023-01-05

/

返回文章
返回