搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-As-S硫系玻璃的结构与性能调控

杨艳 陈云翔 刘永华 芮扬 曹烽燕 杨安平 祖成奎 杨志勇

引用本文:
Citation:

Ge-As-S硫系玻璃的结构与性能调控

杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇

Tailoring structure and property of Ge-As-S chalcogenide glass

Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong
PDF
导出引用
  • 制备了系列具有不同化学配比特征的Ge-As-S硫系玻璃, 并研究了玻璃的结构、折射率和光学带隙(Eg). Ge-As-S玻璃具有以[GeS4]四面体和[AsS3]三角锥为骨架结构单元相互交联形成的连续网络结构, 当S过量时, 结构中出现S链或S8环; 当S不足时, 结构中形成As4S4/As4S3分子, 甚至出现大量As-As/Ge-Ge同极键. 玻璃的组成元素在2-10 m波段的摩尔折射度分别为RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol和RS=7.78-7.86 cm3/mol. Ge-As-S玻璃的折射率与密度和组成元素的摩尔折射度之间存在较好的定量关系, 可根据该定量关系在1%偏差内对玻璃的折射率进行预测或调控. 提出了采用玻璃粉末的漫反射光谱确定可靠Eg的方法, 通过该方法可获得玻璃的强吸收数据用于确定Eg. Ge-As-S玻璃的Eg与玻璃的平均键能之间存在较好的关联, S含量较高的玻璃更倾向于具有较大的平均键能, 因此具有较大的Eg.
    Chalcogenide glass has been considered to be a promising optical material for infrared (IR) transmission and nonlinear optics because of its favorable physical properties such as wide IR transparent windows, high linear and nonlinear refractive indices, and tunable photosensitivity. In many optical designs and practical applications, the refractive index (n) and optical bandgap (Eg) are two important parameters. Aiming to evaluate the composition dependence of the n and Eg in Ge-As-S chalcogenide glasses, a series of glasses with different stoichiometric characteristics are synthesized in quartz tubes under vacuum by the melt quenching technique. The structure, n and Eg of the glass are investigated by Raman spectroscopy, ellipsometry, and diffused reflectance spectroscopy, respectively.To eliminate thermal effects on the measured Raman spectra, the data are corrected by the Bose-Einstein thermal factor. Raman spectrum analyses indicate that Ge-As-S glass has a continuous network structure with interconnected [GeS4] tetrahedra and [AsS3] pyramids forming the backbone. When S amount is excess, S chains or S8 rings emerge. When S amount is deficient, As4S4/As4S3 molecules are formed, and even a large number of As-As/Ge-Ge homopolar bonds appear in the structure. The n values at different wavelengths are obtained by fitting the ellipsometry data with the Sellmeier dispersion model. The values of molar refractivity (Ri) of Ge, As and S elements are evaluated by using the measured n and density (d) of the investigated glass. The optimal values of Ri at 2-10 m for each element are RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol, and RS=7.78-7.86 cm3/mol, respectively; and the values decrease with increasing wavelength. The n of Ge-As-S glass is well quantitatively correlated to the d and the Ri of constituent elements, so that its value can be predicted or tailored within 1% deviation. A method to determine reliable Eg of a glass is proposed based on diffuse reflectance spectrum (DRS) of glass powders. To determine Eg of a glass, the absorption coefficient () is required to be as low as ~104 cm-1. For a 1-mm-thick bulk glass, the detection limit of a spectrophotometer is typically 100 cm-1. To obtain a reasonable Eg, the sample thickness used for the measurement must be less than 10 m. Such a thin glass sample is difficult to prepare. In comparison, DRS of glass powers measured using a spectrophotometer is able to provide valid absorption data in a 104 cm-1 range required for Eg determination. In this proposed method, the Kubelka-Munk function F(R), which is proportional to of the glass, is calculated from the measured DRS on the glass powders. The F(R) is calibrated by using the DRS of a glass (e.g. As2S3) with a known Eg. Using the same F(R) absorbance value, Eg of the Ge-As-S glass is determined based on DRS of powders measured under the same condition. The Eg of Ge-As-S glass is broadly correlated to the average bond energy of the glass. The glass containing more S atoms tends to show a higher average bond energy, and therefore exhibits a larger Eg.
      通信作者: 杨志勇, yangzhiyong@jsnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61205207, 61405080, 61575086)和江苏省大学生创新创业训练计划(批准号: 201410320016Z)资助的课题.
      Corresponding author: Yang Zhi-Yong, yangzhiyong@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205207, 61405080, 61575086) and the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (Grant No. 201410320016Z).
    [1]

    Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1

    [3]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439

    [4]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141

    [5]

    Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649

    [6]

    Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927

    [7]

    Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113

    [8]

    Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830

    [9]

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]

    [10]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389

    [11]

    Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781

    [12]

    Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78

    [13]

    Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [14]

    Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143

    [15]

    Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61

    [16]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3

    [17]

    Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444

    [18]

    Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71

    [19]

    Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567

    [20]

    Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49

    [21]

    Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404

    [22]

    Ward A T 1968 J. Phys. Chem. B 72 4133

    [23]

    Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132

    [24]

    Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067

    [25]

    Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410

    [26]

    Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]

    [27]

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]

    [28]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319

    [29]

    Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236

    [30]

    Street R A 1976 Adv. Phys. 25 397

    [31]

    Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647

    [32]

    Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902

    [33]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [34]

    Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367

    [35]

    Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245

    [36]

    Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139

  • [1]

    Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1

    [3]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439

    [4]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141

    [5]

    Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649

    [6]

    Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927

    [7]

    Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113

    [8]

    Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830

    [9]

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]

    [10]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389

    [11]

    Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781

    [12]

    Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78

    [13]

    Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [14]

    Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143

    [15]

    Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61

    [16]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3

    [17]

    Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444

    [18]

    Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71

    [19]

    Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567

    [20]

    Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49

    [21]

    Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404

    [22]

    Ward A T 1968 J. Phys. Chem. B 72 4133

    [23]

    Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132

    [24]

    Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067

    [25]

    Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410

    [26]

    Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]

    [27]

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]

    [28]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319

    [29]

    Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236

    [30]

    Street R A 1976 Adv. Phys. 25 397

    [31]

    Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647

    [32]

    Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902

    [33]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [34]

    Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367

    [35]

    Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245

    [36]

    Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥. S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响. 物理学报, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [3] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生. 物理学报, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [4] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法. 物理学报, 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [5] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [6] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究. 物理学报, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [7] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [8] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [9] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [13] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [14] 赵跃智, 廖桂华, 陈文娟, 曹钦存. TeO2-Nb2O5-BaCl2 玻璃的结构及光学性能研究. 物理学报, 2012, 61(23): 237802. doi: 10.7498/aps.61.237802
    [15] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [19] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [20] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
计量
  • 文章访问数:  6884
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-25
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回