搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究

朱孟龙 杨俊 董玉兰 周源 邵岩 侯海良 陈智慧 何军

引用本文:
Citation:

Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究

朱孟龙, 杨俊, 董玉兰, 周源, 邵岩, 侯海良, 陈智慧, 何军

Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111)

Zhu Meng-Long, Yang Jun, Dong Yu-Lan, Zhou Yuan, Shao Yan, Hou Hai-Liang, Chen Zhi-Hui, He Jun
PDF
HTML
导出引用
  • 二维铁电材料因具有自发极化特性, 在铁电场效应晶体管、非易失性存储器和传感器中具有广泛的技术和器件应用. 特别是第Ⅳ主族单硫属化合物具有最高的理论预测热电特性和本征的面内铁电极化特性, 适合作为探索二维铁电极化特性的模型材料. 然而, 由于相对大的解理能, 目前不容易获得高质量和大尺寸单层第Ⅳ主族单硫属化合物, 严重阻碍了这些材料应用到快速发展的二维材料及其异质结研究中. 本文采用分子束外延方法在Cu(111)衬底上成功制备单层GeS. 通过高分辨扫描隧道显微镜, 原位X射线光电子能谱和角分辨光电子能谱以及密度泛函理论计算, 对单层GeS原子晶格和电子能带结构进行了系统表征. 研究结果表明: 单层GeS具有正交晶格结构和近似平带的电子能带结构. 单层GeS的成功制备和表征使得制备高质量和大尺寸单层第Ⅳ主族单硫属化合物成为可能, 有利于该主族材料应用到快速发展的二维铁电材料以及异质结研究中.
    Two-dimensional (2D) ferroelectric materials are important materials for both fundamental properties and potential applications. Especially, group Ⅳ monochalcogenide possesses highest thermoelectric performance and intrinsic ferroelectric polarization properties and can sever as a model to explore ferroelectric polarization properties. However, due to the relatively large exfoliation energy, the creation of high-quality and large-size monolayer group Ⅳ monochalcogenide is not so easy, which seriously hinders the integration of these materials into the fast-developing field of 2D materials and their heterostructures. Herein, monolayer GeS is successfully fabricated on Cu(111) substrate by molecular beam epitaxy method, and the lattice structure and the electronic band structure of monolayer GeS are systematically characterized by high-resolution scanning tunneling microscopy, low-energy electron diffraction, in-situ X-ray photoelectron spectroscopy, Raman spectra, and angle-resolved photoelectron spectroscopy, and density functional theory calculations. All atomically resolved STM images reveal that the obtained monolayer GeS has an orthogonal lattice structure, which consists with theoretical prediction. Meanwhile, the distinct moiré pattern formed between monolayer GeS and Cu(111) substrate also confirms the orthogonal lattice structure. In order to examine the chemical composition and valence state of as-prepared monolayer GeS, in-situ XPS is utilized without being exposed to air. The measured spectra of XPS core levels suggest that the valence states of Ge and S elements are identified to be +2 and –2, respectively and the atomic ratio of Ge/S is 1∶1.5, which is extremely close to the stoichiometric ratio of 1∶1 for GeS. To further corroborate the quality and lattice structure of the monolayer GeS film, ex-situ Raman measurements are also performed for monolayer GeS on highly oriented pyrolytic graphene (HOPG) and multilayer graphene substrate. Three well-defined typical characteristic Raman peaks of GeS are observed. Finally, in-situ ARPES measurement are conducted to determine the electronic band structure of monolayer GeS on Cu(111). The results demonstrate that the monolayer GeS has a nearly flat band electronic band structure, consistent with our density functional theory calculation. The realization and investigation of the monolayer GeS extend the scope of 2D ferroelectric materials and make it possible to prepare high quality and large size monolayer group Ⅳ monochalcogenides, which is beneficial to the application of this main group material to the rapidly developing 2D ferroelectric materials and heterojunction research.
      通信作者: 侯海良, hhlcj1732@126.com ; 陈智慧, czh_nlo@csu.edu.cn
    • 基金项目: 湖南省教育厅青年项目(批准号: 22B0658)、湖南省自然科学基金(批准号: 2023JJ30199, 2021JJ40704)和国家自然科学基金(批准号: 12004440, 62275275)资助的课题.
      Corresponding author: Hou Hai-Liang, hhlcj1732@126.com ; Chen Zhi-Hui, czh_nlo@csu.edu.cn
    • Funds: Project supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 22B0658), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2023JJ30199, 2021JJ40704), and the National Natural Science Foundation of China (Grant Nos. 12004440, 62275275).
    [1]

    Khan A I, Keshavarzi A, Datta S 2020 Nat. Electron. 3 588Google Scholar

    [2]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [3]

    John R A, Demirağ Y, Shynkarenko Y, Berezovska Y, Ohannessian N, Payvand M, Zeng P, Bodnarchuk M I, Krumeich F, Kara G, Shorubalko I, Nair M V, Cooke G A, Lippert T, Indiveri G, Kovalenko M V 2022 Nat. Commun. 13 2074Google Scholar

    [4]

    Wang J, Wang F, Wang Z, Huang W, Yao Y, Wang Y, Yang J, Li N, Yin L, Cheng R, Zhan X, Shan C, He J 2021 Sci. Bull. 66 2288Google Scholar

    [5]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [6]

    Lee D, Lu H, Gu Y, Choi S Y, Li S D, Ryu S, Paudel T R, Song K, Mikheev E, Lee S, Stemmer S, Tenne D A, Oh S H, Tsymbal E Y, Wu X, Chen L Q, Gruverman A, Eom C B 2015 Science 349 1314Google Scholar

    [7]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [8]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [9]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [10]

    Voiry D, Goswami A, Kappera R, et al. 2015 Nat. Chem. 7 45Google Scholar

    [11]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [12]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [13]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [14]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [15]

    Sui F, Jin M, Zhang Y, Qi R, Wu Y N, Huang R, Yue F, Chu J 2023 Nat. Commun. 14 36Google Scholar

    [16]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [17]

    Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z, Liu F 2022 Nat. Commun. 13 7696Google Scholar

    [18]

    孟雨欣, 赵漪凡, 李绍春 2021 物理学报 70 148101Google Scholar

    Meng Y X, Zhao Y F, Li S C 2021 Acta Phys. Sin. 70 148101Google Scholar

    [19]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 物理学报 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [20]

    Chowdhury T, Taneja C, Vasdev A, Ghosh P, Sheet G, Kumar G V P, Rahman A 2022 Adv. Electron. Mater. 8 2101158Google Scholar

    [21]

    Sutter E, Zhang B, Sun M, Sutter P 2019 ACS Nano 13 9352Google Scholar

    [22]

    Guan Z, Zhao Y, Wang X, Zhong N, Deng X, Zheng Y, Wang J, Xu D, Ma R, Yue F, Cheng Y, Huang R, Xiang P, Wei Z, Chu J, Duan C 2022 ACS Nano 16 1308Google Scholar

    [23]

    Yu H, Gao D, Wang X, Du X, Lin X, Guo W, Zou R, Jin C, Li K, Chen Y 2018 NPG Asia Mater. 10 882Google Scholar

    [24]

    Zhu M, Zhong M, Guo X, Wang Y, Chen Z, Huang H, He J, Su C, Loh K P 2021 Adv. Opt. Mater. 9 2101200Google Scholar

    [25]

    Sutter P, Komsa H P, Lu H, Gruverman A, Sutter E 2021 Nano Today 37 101082Google Scholar

    [26]

    Du R, Wang Y, Cheng M, Wang P, Li H, Feng W, Song L, Shi J, He J 2022 Nat. Commun. 13 6130Google Scholar

    [27]

    Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, Nagashio K 2020 Nat. Commun. 11 2428Google Scholar

    [28]

    Khan H, Mahmood N, Zavabeti A, Elbourne A, Rahman Md A, Zhang B Y, Krishnamurthi V, Atkin P, Ghasemian M B, Yang J, Zheng G, Ravindran A R, Walia S, Wang L, Russo S P, Daeneke T, Li Y, Kalantar-Zadeh K 2020 Nat. Commun. 11 3449Google Scholar

    [29]

    Chang K, Küster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [30]

    Chiu M H, Ji X, Zhang T, Mao N, Luo Y, Shi C, Zheng X, Liu H, Han Y, Wilson W L, Luo Z, Tung V, Kong J 2023 Adv. Electron. Mater. 9 2201031Google Scholar

    [31]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2023 Adv. Sci. 10 2201842Google Scholar

    [32]

    Zhou B, Gong S J, Jiang K, Xu L, Shang L, Zhang J, Hu Z, Chu J 2020 J. Mater. Chem. C 8 89Google Scholar

    [33]

    Yan Y, Deng Q, Li S, Guo T, Li X, Jiang Y, Song X, Huang W, Yang J, Xia C 2021 Nanoscale 13 16122Google Scholar

    [34]

    Pan J, Jing S, Chen W, Bian B, Liao B, Wan G 2022 Appl. Phys. A 128 141Google Scholar

    [35]

    Sharma D, Kumar R, Pal A, Sakhuja N, Bhat N 2023 ACS Appl. Electron. Mater. 5 3162Google Scholar

    [36]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [37]

    Wu S, Chen Y, Wang X, Jiao H, Zhao Q, Huang X, Tai X, Zhou Y, Chen H, Wang X, Huang S, Yan H, Lin T, Shen H, Hu W, Meng X, Chu J, Wang J 2022 Nat. Commun. 13 3198Google Scholar

    [38]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2018 Phys. Rev. B 97 144104Google Scholar

    [39]

    Xu Y, Zhang H, Shao H, Ni G, Li J, Lu H, Zhang R, Peng B, Zhu Y, Zhu H 2017 Phys. Rev. B 96 245421Google Scholar

    [40]

    Li Z, Gu Y, He C, Zou X 2022 Phys. Rev. B 106 035426Google Scholar

    [41]

    Von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771Google Scholar

    [42]

    Luo N, Wang C, Jiang Z, Xu Y, Zou X, Duan W 2018 Adv. Funct. Mater. 28 1804581Google Scholar

    [43]

    Nguyen L T, Makov G 2022 Cryst. Growth Des. 22 4956Google Scholar

    [44]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 128 1698Google Scholar

    [45]

    Jia S, Li H, Gotoh T, Longeaud C, Zhang B, Lü J, Lü S, Zhu M, Song Z, Liu Q, Robertson J, Liu M 2020 Nat. Commun. 11 4636Google Scholar

    [46]

    Feng M, Liu S C, Hu L, Wu J, Liu X, Xue D J, Hu J S, Wan L J 2021 J. Am. Chem. Soc. 143 9664Google Scholar

    [47]

    Chen H, Keiser C, Du S, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [48]

    Ribeiro H B, Ramos S, Seixas L, De Matos C J S, Pimenta M A 2019 Phys. Rev. B 100 094301Google Scholar

    [49]

    Ul Haq B, AlFaify S, Laref A 2019 J. Phys. Chem. C 123 18124Google Scholar

    [50]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508Google Scholar

    [51]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

  • 图 1  单层GeS原子分辨STM测量 (a) MBE生长腔结构(左)与STM测量和单层GeS晶体结构(右); (b), (c) 单层GeS在Cu(111)衬底表面形成的摩尔条纹及其快速傅里叶变换, 图像大小为14 nm×14 nm; (d) Cu(111)上单层GeS生长顶示意图; (e), (f) 单层GeS原子分辨STM图像及其快速傅里叶变换, 样品偏压1.2 V和隧穿电流0.60 nA, 图像大小为14 nm×14 nm

    Fig. 1.  Atomically resolved STM measurements of monolayer GeS: (a) Schematic of MBE growth chamber (left) and STM set-up and crystal structure of monolayer GeS (right); (b), (c) moiré pattern formed betweem monolayer GeS and Cu(111) substrate and its fast Fourier transform with the image size of 14 nm × 14 nm; (d) schematic of the monolayer GeS grown on Cu(111); (e), (f) atomically resolved STM images of monolayer GeS and its fast Fourier transform with sample bias voltage of 1.2 V and tunneling current of 0.60 nA, and image size of 14 nm × 14 nm.

    图 2  单层GeS的Ge 3d (a)和S 2p (b)芯能级XPS能谱

    Fig. 2.  XPS spectra of monolayer GeS for (a) Ge 3d and (b) S 2p core levels.

    图 3  ΓΧΓY高对称方向的能带结构 (a), (b) 单层GeS理论计算能带结构; (c), (d) Cu(111)衬底能带结构; (e), (f)单层GeS/Cu(111)异质结理论计算的能带结构(上)与APRES测量的能带结构(下)

    Fig. 3.  Electronic band structures along ΓΧ and ΓY high symmetry directions: (a), (b) Theoretically calculated electronic band structure of monolayer GeS; (c), (d) elelctronic band structure of Cu(111) substrate; (e), (f) theoretically calculated electronic band structure of monolayer GeS/Cu(111) heterojunction (top) and electronic band structure measured by APRES (bottom).

  • [1]

    Khan A I, Keshavarzi A, Datta S 2020 Nat. Electron. 3 588Google Scholar

    [2]

    Wang S, Liu L, Gan L, Chen H, Hou X, Ding Y, Ma S, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [3]

    John R A, Demirağ Y, Shynkarenko Y, Berezovska Y, Ohannessian N, Payvand M, Zeng P, Bodnarchuk M I, Krumeich F, Kara G, Shorubalko I, Nair M V, Cooke G A, Lippert T, Indiveri G, Kovalenko M V 2022 Nat. Commun. 13 2074Google Scholar

    [4]

    Wang J, Wang F, Wang Z, Huang W, Yao Y, Wang Y, Yang J, Li N, Yin L, Cheng R, Zhan X, Shan C, He J 2021 Sci. Bull. 66 2288Google Scholar

    [5]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [6]

    Lee D, Lu H, Gu Y, Choi S Y, Li S D, Ryu S, Paudel T R, Song K, Mikheev E, Lee S, Stemmer S, Tenne D A, Oh S H, Tsymbal E Y, Wu X, Chen L Q, Gruverman A, Eom C B 2015 Science 349 1314Google Scholar

    [7]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [8]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506Google Scholar

    [9]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309Google Scholar

    [10]

    Voiry D, Goswami A, Kappera R, et al. 2015 Nat. Chem. 7 45Google Scholar

    [11]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [12]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [13]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [14]

    Bao Y, Song P, Liu Y, Chen Z, Zhu M, Abdelwahab I, Su J, Fu W, Chi X, Yu W, Liu W, Zhao X, Xu Q H, Yang M, Loh K P 2019 Nano Lett. 19 5109Google Scholar

    [15]

    Sui F, Jin M, Zhang Y, Qi R, Wu Y N, Huang R, Yue F, Chu J 2023 Nat. Commun. 14 36Google Scholar

    [16]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [17]

    Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z, Liu F 2022 Nat. Commun. 13 7696Google Scholar

    [18]

    孟雨欣, 赵漪凡, 李绍春 2021 物理学报 70 148101Google Scholar

    Meng Y X, Zhao Y F, Li S C 2021 Acta Phys. Sin. 70 148101Google Scholar

    [19]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 物理学报 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [20]

    Chowdhury T, Taneja C, Vasdev A, Ghosh P, Sheet G, Kumar G V P, Rahman A 2022 Adv. Electron. Mater. 8 2101158Google Scholar

    [21]

    Sutter E, Zhang B, Sun M, Sutter P 2019 ACS Nano 13 9352Google Scholar

    [22]

    Guan Z, Zhao Y, Wang X, Zhong N, Deng X, Zheng Y, Wang J, Xu D, Ma R, Yue F, Cheng Y, Huang R, Xiang P, Wei Z, Chu J, Duan C 2022 ACS Nano 16 1308Google Scholar

    [23]

    Yu H, Gao D, Wang X, Du X, Lin X, Guo W, Zou R, Jin C, Li K, Chen Y 2018 NPG Asia Mater. 10 882Google Scholar

    [24]

    Zhu M, Zhong M, Guo X, Wang Y, Chen Z, Huang H, He J, Su C, Loh K P 2021 Adv. Opt. Mater. 9 2101200Google Scholar

    [25]

    Sutter P, Komsa H P, Lu H, Gruverman A, Sutter E 2021 Nano Today 37 101082Google Scholar

    [26]

    Du R, Wang Y, Cheng M, Wang P, Li H, Feng W, Song L, Shi J, He J 2022 Nat. Commun. 13 6130Google Scholar

    [27]

    Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, Nagashio K 2020 Nat. Commun. 11 2428Google Scholar

    [28]

    Khan H, Mahmood N, Zavabeti A, Elbourne A, Rahman Md A, Zhang B Y, Krishnamurthi V, Atkin P, Ghasemian M B, Yang J, Zheng G, Ravindran A R, Walia S, Wang L, Russo S P, Daeneke T, Li Y, Kalantar-Zadeh K 2020 Nat. Commun. 11 3449Google Scholar

    [29]

    Chang K, Küster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [30]

    Chiu M H, Ji X, Zhang T, Mao N, Luo Y, Shi C, Zheng X, Liu H, Han Y, Wilson W L, Luo Z, Tung V, Kong J 2023 Adv. Electron. Mater. 9 2201031Google Scholar

    [31]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2023 Adv. Sci. 10 2201842Google Scholar

    [32]

    Zhou B, Gong S J, Jiang K, Xu L, Shang L, Zhang J, Hu Z, Chu J 2020 J. Mater. Chem. C 8 89Google Scholar

    [33]

    Yan Y, Deng Q, Li S, Guo T, Li X, Jiang Y, Song X, Huang W, Yang J, Xia C 2021 Nanoscale 13 16122Google Scholar

    [34]

    Pan J, Jing S, Chen W, Bian B, Liao B, Wan G 2022 Appl. Phys. A 128 141Google Scholar

    [35]

    Sharma D, Kumar R, Pal A, Sakhuja N, Bhat N 2023 ACS Appl. Electron. Mater. 5 3162Google Scholar

    [36]

    Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar

    [37]

    Wu S, Chen Y, Wang X, Jiao H, Zhao Q, Huang X, Tai X, Zhou Y, Chen H, Wang X, Huang S, Yan H, Lin T, Shen H, Hu W, Meng X, Chu J, Wang J 2022 Nat. Commun. 13 3198Google Scholar

    [38]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2018 Phys. Rev. B 97 144104Google Scholar

    [39]

    Xu Y, Zhang H, Shao H, Ni G, Li J, Lu H, Zhang R, Peng B, Zhu Y, Zhu H 2017 Phys. Rev. B 96 245421Google Scholar

    [40]

    Li Z, Gu Y, He C, Zou X 2022 Phys. Rev. B 106 035426Google Scholar

    [41]

    Von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771Google Scholar

    [42]

    Luo N, Wang C, Jiang Z, Xu Y, Zou X, Duan W 2018 Adv. Funct. Mater. 28 1804581Google Scholar

    [43]

    Nguyen L T, Makov G 2022 Cryst. Growth Des. 22 4956Google Scholar

    [44]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 128 1698Google Scholar

    [45]

    Jia S, Li H, Gotoh T, Longeaud C, Zhang B, Lü J, Lü S, Zhu M, Song Z, Liu Q, Robertson J, Liu M 2020 Nat. Commun. 11 4636Google Scholar

    [46]

    Feng M, Liu S C, Hu L, Wu J, Liu X, Xue D J, Hu J S, Wan L J 2021 J. Am. Chem. Soc. 143 9664Google Scholar

    [47]

    Chen H, Keiser C, Du S, Gao H J, Sutter P, Sutter E 2017 Phys. Chem. Chem. Phys. 19 32473Google Scholar

    [48]

    Ribeiro H B, Ramos S, Seixas L, De Matos C J S, Pimenta M A 2019 Phys. Rev. B 100 094301Google Scholar

    [49]

    Ul Haq B, AlFaify S, Laref A 2019 J. Phys. Chem. C 123 18124Google Scholar

    [50]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508Google Scholar

    [51]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [4] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [5] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [6] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] 石高明, 邹志强, 孙立民, 李玮聪, 刘晓勇. Si衬底上生长的MnSi薄膜和MnSi1.7 纳米线的STM和XPS分析. 物理学报, 2012, 61(22): 227301. doi: 10.7498/aps.61.227301
    [12] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [13] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [14] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [15] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [16] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [17] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [18] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [19] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  2911
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-21
  • 上网日期:  2023-10-10
  • 刊出日期:  2024-01-05

/

返回文章
返回