搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究

徐丹 殷俊 孙昊桦 王观勇 钱冬 管丹丹 李耀义 郭万林 刘灿华 贾金锋

引用本文:
Citation:

铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究

徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋

Scanning tunneling microscopy study of h-BN thin films grown on Cu foils

Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng
PDF
导出引用
  • 利用扫描隧道显微镜研究了采用化学气相沉积法在铜箔表面生长出的高质量的六角氮化硼薄膜. 大范围的扫描隧道显微镜图像显示出该薄膜具有原子级平整的表面, 而扫描隧道谱则显示, 扫描隧道显微镜图像反映出的是该薄膜样品的隧穿势垒空间分布. 极低偏压的扫描隧道显微镜图像呈现了氮化硼薄膜表面的六角蜂窝周期性原子排列, 而高偏压的扫描隧道显微镜图像则呈现出无序和有序排列区域共存的电子调制图案. 该调制图案并非源于氮化硼薄膜和铜箔衬底的面内晶格失配, 而极有可能来源于两者界面处的氢、硼和/或氮原子在铜箔表面的吸附所导致的隧穿势垒的局域空间分布.
    Analogous to graphite, hexagonal boron nitride (h-BN) has a layered structure composed of boron and nitrogen atoms that are alternatively bond to each other in a honeycomb array. As the layers are held together by weak van der Waals forces, h-BN thin films can be grown on surfaces of various metal crystals in a layer-by-layer manner, which is again similar to graphene sheets and thus attracts a lot of research interests. In this work, scanning tunneling microscope and spectroscope (STM and STS) were applied to the study of an h-BN thin film with a thickness of about 10 nm grown on Cu foil by means of chemical vapor deposition. X-ray diffraction from the Cu foil shows only one strong peak of Cu(200) in the angle range of 40-60, indicating that the Cu foil is mainly Cu(100). After sufficient annealing in an UHV chamber, the h-BN film sample is transferred to a cooling stage (77 K) for STM/STS measurement. Its high quality is confirmed by a large-scale STM scan that shows an atomically flat topography. A series of dI/dV data taken within varied energy windows all exhibit similar U shapes but with different bottom widths that monotonously decrease with the sweeping energy window. The dI/dV curve taken in the energy window of [-1 V, +1 V] even shows no energy gap in spite that h-BN film is insulating with a quite large energy gap of around 6 eV, as observed in a large-energy-window dI/dV curve (from -5 V to +5 V). These results indicate that the STM images reflect the spatial distribution of tunneling barriers between Cu(100) substrate and STM tip, rather than the local density of states of the h-BN surface. At high sample biases (from 4 V to 1 V), STM images exhibit an electronic modulation pattern with short range order. The modulation pattern displays a substructure in low-bias STM images (less than 100 mV), which finally turns to the (11) lattice of h-BN surface when the sample bias is extremely lowered to 3 mV. It is found that the electronic modulation pattern cannot be fully reproduced by superimposing hexagonal BN lattice on tetragonal Cu(100) lattice, no matter what their relative in-plane crystal orientation is. This implies that the electronic modulation pattern in the STM images is not a Mori pattern due to lattice mismatch. We speculate that it may originate from spatial distribution of tunneling barrier induced by adsorption of H, B and/or N atoms on the Cu(100) surface in the CVD growth process.
      通信作者: 刘灿华, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn ; 贾金锋, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB921902, 2012CB927401, 2013CB932604, 2012CB933403)、 国家自然科学基金(批准号: 11521404, 11134008, 11574201, 11574202, 11504230, 51472117, 51535005)、 上海市科委科技基金(批准号: 15JC1402300, 14PJ1404600) 和江苏省自然科学基金(批准号: BK20130781)资助的课题.
      Corresponding author: Liu Can-Hua, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn ; Jia Jin-Feng, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921902, 2012CB927401, 2013CB932604, 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 11521404, 11134008, 11574201, 11574202, 11504230, 51472117, 51535005, 51472117, 51535005), Shanghai Committee of Science and Technology, China (Grant Nos. 15JC1402300, 14PJ1404600), and Jiangsu Province Natural Science Foundation, China (Grant No. BK20130781).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [6]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [8]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394

    [9]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2007 Nature Mater. 7 151

    [10]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotech. 5 722

    [13]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 物理学报 64 077305]

    [14]

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101 (in Chinese) [刘梦溪, 张艳锋, 刘忠范 2015 物理学报 64 078101]

    [15]

    Zhang K, Zhang H, Cheng X 2016 Chin. Phys. B 25 037104

    [16]

    Li G F, Hu J, Lv H, Cui Z, Hou X, Liu S, Du Y 2016 Chin. Phys. B 25 027304

    [17]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [18]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425

    [19]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [20]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [21]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J 2012 Nano Lett. 12 161

    [22]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497

    [23]

    Li X, Yin J, Zhou J, Guo W 2014 Nanotechnology 25 105701

    [24]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147

    [25]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [26]

    Ma Y D, Dai Y, Guo M, Niu C W, Lu J B, Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546

    [27]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2013 Nature Nanotech. 8 100

    [28]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 135 351

    [29]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [30]

    Watanabe K, Taniguchi T, Kanda H 2004 Nature Mater. 3 404

    [31]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583

    [32]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [33]

    Laskowski R, Blaha P, Gallauner T, Schwarz K 2007 Phys. Rev. Lett. 98 106802

    [34]

    Brugger T, Gnther S, Wang B, Hugo Dil J, Bocquet M L, Osterwalder J, Wintterlin J, Greber T 2009 Phys. Rev. B 79 045407

    [35]

    Sutter P, Lahiri J, Albrecht P, Sutter E 2011 ACS Nano 5 7303

    [36]

    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C 1995 Phys. Rev. B 51 4606

    [37]

    Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A 1997 Phys. Rev. Lett. 79 4609

    [38]

    Auwrter W, Suter H U, Sachdev H, Greber T 2004 Chem. Mater. 16 343

    [39]

    Schulz F, Drost R, Hmlinen S K, Demonchaux T, Seitsonen A P, Liljeroth P 2014 Phys. Rev. B 89 235429

    [40]

    Mller F, Stwe K, Sachdev H 2005 Chem. Mater. 17 3464

    [41]

    Morscher M, Corso M, Greber T, Osterwalder J 2006 Surf. Sci. 600 3280

    [42]

    Corso M, Greber T, Osterwalder J 2005 Surf. Sci. 577 L78

    [43]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerstrm R, Mikkelsen A, Lundgren E, Mrtensson N 2007 Phys. Rev. B 75 245412

    [44]

    Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen A P, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth J V, Auwrter W 2012 Nano Lett. 12 5821

    [45]

    Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H, Karna S P 2014 Nano Lett. 14 839

    [46]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [47]

    Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, Hofmann S 2014 Chem. Mater. 26 6380

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [6]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [7]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [8]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394

    [9]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2007 Nature Mater. 7 151

    [10]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nature Nanotech. 5 722

    [13]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 物理学报 64 077305]

    [14]

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101 (in Chinese) [刘梦溪, 张艳锋, 刘忠范 2015 物理学报 64 078101]

    [15]

    Zhang K, Zhang H, Cheng X 2016 Chin. Phys. B 25 037104

    [16]

    Li G F, Hu J, Lv H, Cui Z, Hou X, Liu S, Du Y 2016 Chin. Phys. B 25 027304

    [17]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [18]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425

    [19]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134

    [20]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209

    [21]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M, Palacios T, Kong J 2012 Nano Lett. 12 161

    [22]

    Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, Guo W 2015 Small 11 4497

    [23]

    Li X, Yin J, Zhou J, Guo W 2014 Nanotechnology 25 105701

    [24]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147

    [25]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [26]

    Ma Y D, Dai Y, Guo M, Niu C W, Lu J B, Huang B B 2011 Phys. Chem. Chem. Phys. 13 15546

    [27]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A 2013 Nature Nanotech. 8 100

    [28]

    Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P 2007 Science 135 351

    [29]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [30]

    Watanabe K, Taniguchi T, Kanda H 2004 Nature Mater. 3 404

    [31]

    Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Dresselhaus M, Palacios T, Kong J 2012 ACS Nano 6 8583

    [32]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932

    [33]

    Laskowski R, Blaha P, Gallauner T, Schwarz K 2007 Phys. Rev. Lett. 98 106802

    [34]

    Brugger T, Gnther S, Wang B, Hugo Dil J, Bocquet M L, Osterwalder J, Wintterlin J, Greber T 2009 Phys. Rev. B 79 045407

    [35]

    Sutter P, Lahiri J, Albrecht P, Sutter E 2011 ACS Nano 5 7303

    [36]

    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C 1995 Phys. Rev. B 51 4606

    [37]

    Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A 1997 Phys. Rev. Lett. 79 4609

    [38]

    Auwrter W, Suter H U, Sachdev H, Greber T 2004 Chem. Mater. 16 343

    [39]

    Schulz F, Drost R, Hmlinen S K, Demonchaux T, Seitsonen A P, Liljeroth P 2014 Phys. Rev. B 89 235429

    [40]

    Mller F, Stwe K, Sachdev H 2005 Chem. Mater. 17 3464

    [41]

    Morscher M, Corso M, Greber T, Osterwalder J 2006 Surf. Sci. 600 3280

    [42]

    Corso M, Greber T, Osterwalder J 2005 Surf. Sci. 577 L78

    [43]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerstrm R, Mikkelsen A, Lundgren E, Mrtensson N 2007 Phys. Rev. B 75 245412

    [44]

    Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen A P, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth J V, Auwrter W 2012 Nano Lett. 12 5821

    [45]

    Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H, Karna S P 2014 Nano Lett. 14 839

    [46]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834

    [47]

    Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, Hofmann S 2014 Chem. Mater. 26 6380

  • [1] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展. 物理学报, 2022, 71(12): 128102. doi: 10.7498/aps.71.20220405
    [2] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [3] 李文辉, 陈岚, 吴克辉. 硼烯的实验制备. 物理学报, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [4] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [5] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] 张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究. 物理学报, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [10] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [11] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [12] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [13] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [14] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [15] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [16] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [17] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [18] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  4110
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-03-23
  • 刊出日期:  2016-06-05

铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究

  • 1. 上海交通大学物理与天文系, 人工结构及量子调控教育部重点实验室, 上海 200240;
  • 2. 南京航空航天大学航空宇航学院, 机械结构力学及控制国家重点实验室, 纳智能材料器件教育部重点实验室, 南京 210016;
  • 3. 人工微结构科学与技术协同创新中心, 南京 210093
  • 通信作者: 刘灿华, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn ; 贾金锋, canhualiu@sjtu.edu.cn;jfjia@sjtu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2013CB921902, 2012CB927401, 2013CB932604, 2012CB933403)、 国家自然科学基金(批准号: 11521404, 11134008, 11574201, 11574202, 11504230, 51472117, 51535005)、 上海市科委科技基金(批准号: 15JC1402300, 14PJ1404600) 和江苏省自然科学基金(批准号: BK20130781)资助的课题.

摘要: 利用扫描隧道显微镜研究了采用化学气相沉积法在铜箔表面生长出的高质量的六角氮化硼薄膜. 大范围的扫描隧道显微镜图像显示出该薄膜具有原子级平整的表面, 而扫描隧道谱则显示, 扫描隧道显微镜图像反映出的是该薄膜样品的隧穿势垒空间分布. 极低偏压的扫描隧道显微镜图像呈现了氮化硼薄膜表面的六角蜂窝周期性原子排列, 而高偏压的扫描隧道显微镜图像则呈现出无序和有序排列区域共存的电子调制图案. 该调制图案并非源于氮化硼薄膜和铜箔衬底的面内晶格失配, 而极有可能来源于两者界面处的氢、硼和/或氮原子在铜箔表面的吸附所导致的隧穿势垒的局域空间分布.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回