搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAs(110)解理面的扫描隧道谱的理论诠释

戴昊光 查访星 陈平平

引用本文:
Citation:

InGaAs(110)解理面的扫描隧道谱的理论诠释

戴昊光, 查访星, 陈平平

Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs

Dai Hao-Guang, Zha Fang-Xing, Chen Ping-Ping
PDF
HTML
导出引用
  • 本工作应用截面扫描隧道显微镜(XSTM)研究了In0.53Ga0.47As/InP异质结构的(110)解理面. 扫描隧道谱(STS)测量结果显示, InGaAs的电流-电压(I-V)隧道谱呈现与衬底InP(110)面完全不同特点. InP的I-V谱呈现的零电流平台宽度(隧道谱表观带隙)接近材料带隙, 可基于平带模型解释. In0.53Ga0.47As的表观带隙却比其带隙(室温0.74 eV)高出约50%. 这反映了针尖与InGaAs发生隧穿时的不同物理图像, 需应用针尖诱导能带弯曲(TIBB)模型来解释. 基于三维TIBB模型的计算, 我们发现表面态密度是对隧道谱线特征具有敏感影响的参数. 适当选取参数不仅能定量解释InGaAs的I-V谱的零电流平台宽度, 而且能较准确预言零电流平台的起、止能量位置,并能计算给出与实验高度重合的I-V理论谱线.
    The cross-sectional (110) surface of In0.53Ga0.47As/InP hetero-structure grown by molecular beam epitaxy on an InP (001) substrate is characterized by the cross-sectional scanning tunneling microscopy (XSTM). The cleaved (110) surface across the interface between the In0.53Ga0.47As layer and InP layer is atomically flat but displays slight different image contrast between the two neighbor regions. The scanning tunneling spectroscopy (STS) is used to measure the current/voltage (I-V) spectra. The I-V data of the InGaAs surface and InP (110) surface show the different characteristics. The voltage range of zero-current plateau (apparent band gap) in the I-V spectrum of InP displays the values close to its energy band gaps whereas the plateau ranges in the spectra of In0.53Ga0.47As are by contrast generally 50% larger than the energy band gap of In0.53Ga0.47As. The above phenomenon implies the different physical pictures on the tunneling of two surfaces. In the case of InP, the flat band model is feasible since the band edge states existing in the InP (110) surface can prevent the surface from being affected by the tip –induced band bending (TIBB) effect. In contrast, the TIBB effect must be taken into account to explain the I-V spectra of the In0.53Ga0.47As (110) surface. A statistical analysis of the I-V data of In0.53Ga0.47As reveals that the width of current plateau in the I-V spectrum is generally between 1.05 eV and 1.20 eV and the current onset points (turn-points) with the plateau for the different spectra are slightly different from each other. We are able to explain quantitatively the above features based on the three-dimensional TIBB model given by Feenstra (2003 J. Vac. Sci. Technol. B 21 2080). Our calculation reveals that the parameter of density of surface states (DOSS) is a sensitive parameter responsible for the I-V features mentioned above. According to an appropriate assignment of the value of DOSS, which is generally taken in the scope of (0.8–3.0) × 1012 (cm2·eV)–1, we well predict both the width and the onset points of the current-plateau. Moreover, the model also reproduces the line-shapes of the I-V spectra measured on In0.53Ga0.47As.
      通信作者: 查访星, fxzha@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61474073, 61874069)资助的课题
      Corresponding author: Zha Fang-Xing, fxzha@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474073, 61874069)
    [1]

    Tian Z, Gan Y, Zhang T, Wang B, Ji H, Feng Y, Xue J 2019 Phys. Rev. B 100 085440Google Scholar

    [2]

    Lee D H, Gupta J A 2010 Science 330 1807Google Scholar

    [3]

    Wijnheijmer A P, Garleff J K, Teichmann K, Wenderoth M, Loth S, Ulbrich R G, Maksym P A, Roy M, Koenraad P M 2009 Phys. Rev. Lett. 102 166101Google Scholar

    [4]

    Timm R, Feenstra R M, Eisele H, Lenz A, Ivanova L, Lenz E, and Dähne M 2009 J. Appl. Phys 105 093718Google Scholar

    [5]

    Huang B C, Chiu Y P, Huang P C, Wang W C, Tra V T, Yang J C, He Q, Lin J Y, Chang C S, Chu Y H 2012 Phys. Rev. lett. 109 246807Google Scholar

    [6]

    Lin H, Lagoute J, Repain V, Chacon C, Girard Y, Lauret J -S, Ducastelle F, Loiseau A, Rousset S 2010 Nat. Mater. 9 235Google Scholar

    [7]

    Shao F, Zha F X, Pan B C, Shao J, Zhao X L, Shen X C 2014 Phys. Rev. B 89 085423Google Scholar

    [8]

    Feenstra R M 2003 J. Vac. Sci. Technol. B 21 2080Google Scholar

    [9]

    Feenstra R M 2009 Surf. Sci. 603 2841Google Scholar

    [10]

    Feenstra R M, Gaan S, Meyer G, Rieder K H 2005 Phys. Rev. B 71 125316Google Scholar

    [11]

    Dong Y, Feenstra R M, Semtsiv M P, Masselink W T 2008 J. Appl. Phys. 103 073704Google Scholar

    [12]

    Ishida N, Sueoka K, Feenstra R M 2009 Phys. Rev. B 80 075320Google Scholar

    [13]

    Rouvié A, Coussement J, Huet O, Truffer JP, Pozzi M, Oubensaid E H, Hamard S, Maillart P, Costard E 2014 Proc. of SPIE 9249 92490ZGoogle Scholar

    [14]

    Wen J, Wang W J, Chen X R, Li N, Chen X S, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [15]

    郑文龙, 张亚光, 顾溢, 李宝宝, 陈泽中, 陈平平 2019 红外与毫米波学报 38 1001

    Zheng W L, Zhang Y G, Gu Y, Li B B, Chen Z Z, Chen P P 2019 J. Infrared Millim. Waves 38 1001

    [16]

    Zha F X, Hong F, Pan B C, Wang Y, Shao J, Shen X C 2018 Phys. Rev. B 97 035401Google Scholar

    [17]

    Mikkelsen A, Lundgren E 2005 Prog. Surf. Sci. 80 1Google Scholar

    [18]

    Feenstra R M 1994 Phys. Rev. B 50 4561Google Scholar

    [19]

    Albrektsen O, Arent D J, Meier H P, Salemink H W M, 1990 Appl. Phys. Lett. 57 31Google Scholar

    [20]

    Newman N, Spicer W E, Kendelewicz T, Lindau I 1986 J. Vac. Sci. Technol. B 4 931Google Scholar

    [21]

    邓宗武, 郭伟民, 刘焕明, 曹立礼 1999 物理化学学报 15 303Google Scholar

    Deng Z W, Kwok Raymund W M, Lau Leo W M, Cao L L 1999 Acta Phys-Chim. Sin. 15 303Google Scholar

    [22]

    Kingston R H, Neustadter S F 1955 J. Appl. Phys 26 718Google Scholar

    [23]

    Seiwatz R, Green M 1958 J. Appl. Phys 29 1034Google Scholar

    [24]

    Jäger N D, Weber E R, Urban K, Ebert P H 2003 Phys. Rev. B 67 165327Google Scholar

    [25]

    Ivanova L, Borisova S, Eisele H, Dähne M, Laubsch A, Ebert P H 2008 Appl. Phys. Lett. 93 192110Google Scholar

  • 图 1  处于样品托中用于XSTM实验的样品照片

    Fig. 1.  Photography of sample in the sample holder for the XSTM experiment.

    图 2  (a) InGaAs/InP异质结(110)解理面的STM形貌; (b)和(c)为InP和InGaAs(110)面的典型的I-V隧道谱给出的表观带隙测量结果; (d)和(e)分别为在InP和InGaAs(110)表面分别随机采样13和17条I-V谱线给出的表观带隙直方图统计结果

    Fig. 2.  (a) STM topography of the cleaved (110) surface of InGaAs/InP hetero-structure; (b) and (c) are the typical I-V tunneling spectra of InP and InGaAs (110) surface, respectively; (d) and (e) are the statistical histograms of the apparent tunneling gaps with the sampling of 13 and 17 spectra on the (110) surfaces, respectively.

    图 3  平带模型的STM隧道结能带示意图 (a)正偏压; (b)负偏压; TIBB模型下的隧穿能带图 (c)正偏压; (d)负偏压.EC, EVEF分别是样品的导带、价带和费米能级, EF, tip是针尖的费米能级, Edefect表示缺陷态能级.

    Fig. 3.  Schematic energy band diagram of STM tunneling junction with flat band model: (a) Positive sample bias; (b) negative sample bias; schematic energy band diagram of tunneling junction with the TIBB model: (c) positive sample bias; (d) negative sample bias. EC, EV and EF are the conduction band, valence band and Fermi level of the sample respectively, EF, tip is the Fermi level of the tip, and Edefect is the defect level.

    图 4  三维TIBB模型给出的InGaAs表面处带边电势能随所加样品偏压的变化关系, 不同颜色的实线对应于不同DOSS, 对应箭头所指为该态密度下计算得到的表观带隙, 优化的DOSS对应计算结果如红色实线所示

    Fig. 4.  Variation of surface potential of InGaAs with the sample voltage calculated by the 3D TIBB model. The solid lines of different colors correspond to different DOSS, and the corresponding arrows indicate the calculated apparent tunneling gaps at the DOSS. The optimized calculation result is shown by the red line.

    图 5  (a) InGaAs的I-V谱的计算(红色虚线)结果与实验谱线(黑色实线)的对比; (b) 图(a)谱线在整个(–1.6 V, 1.6 V)电压范围对计算/实验对比结果的呈现

    Fig. 5.  (a) Comparison of the I-V spectra between the calculated (red dashed line) and experimental (black solid line); (b) comparison of the spectra within the whole voltage range of (–1.6 V, 1.6 V).

    图 6  (a)—(d) InGaAs的四组I-V谱实验谱线(黑色实线)与模型计算(红色虚线)的比对, 各图中分别注明了计算时采用的表面态密度(DOSS)数值

    Fig. 6.  (a)–(d) Comparison of four groups of experimental I-V spectra (black solid lines) with the corresponding calculated I-V spectra (red dashed line). The DOSS for each curve is indicated, respectively.

    表 1  InGaAs隧道谱特征参量的实验数据与TIBB模型计算的对比

    Table 1.  Comparison of experimental data and TIBB model calculations on the characteristic parameters of InGaAs tunneling spectra.

    The parameters of
    I-V spectra
    Apparent band gap/eVV–onset/VV+onset/V
    Experimental1.13–0.670.46
    Calculations
    with the
    density of surface
    states/(cm2·eV)–1
    01.25–0.890.36
    1.0 × 10111.29–0.890.40
    1.0 × 10121.21–0.750.46
    2.0 × 10121.11–0.660.45
    1.0 × 10130.90–0.490.41
    下载: 导出CSV
  • [1]

    Tian Z, Gan Y, Zhang T, Wang B, Ji H, Feng Y, Xue J 2019 Phys. Rev. B 100 085440Google Scholar

    [2]

    Lee D H, Gupta J A 2010 Science 330 1807Google Scholar

    [3]

    Wijnheijmer A P, Garleff J K, Teichmann K, Wenderoth M, Loth S, Ulbrich R G, Maksym P A, Roy M, Koenraad P M 2009 Phys. Rev. Lett. 102 166101Google Scholar

    [4]

    Timm R, Feenstra R M, Eisele H, Lenz A, Ivanova L, Lenz E, and Dähne M 2009 J. Appl. Phys 105 093718Google Scholar

    [5]

    Huang B C, Chiu Y P, Huang P C, Wang W C, Tra V T, Yang J C, He Q, Lin J Y, Chang C S, Chu Y H 2012 Phys. Rev. lett. 109 246807Google Scholar

    [6]

    Lin H, Lagoute J, Repain V, Chacon C, Girard Y, Lauret J -S, Ducastelle F, Loiseau A, Rousset S 2010 Nat. Mater. 9 235Google Scholar

    [7]

    Shao F, Zha F X, Pan B C, Shao J, Zhao X L, Shen X C 2014 Phys. Rev. B 89 085423Google Scholar

    [8]

    Feenstra R M 2003 J. Vac. Sci. Technol. B 21 2080Google Scholar

    [9]

    Feenstra R M 2009 Surf. Sci. 603 2841Google Scholar

    [10]

    Feenstra R M, Gaan S, Meyer G, Rieder K H 2005 Phys. Rev. B 71 125316Google Scholar

    [11]

    Dong Y, Feenstra R M, Semtsiv M P, Masselink W T 2008 J. Appl. Phys. 103 073704Google Scholar

    [12]

    Ishida N, Sueoka K, Feenstra R M 2009 Phys. Rev. B 80 075320Google Scholar

    [13]

    Rouvié A, Coussement J, Huet O, Truffer JP, Pozzi M, Oubensaid E H, Hamard S, Maillart P, Costard E 2014 Proc. of SPIE 9249 92490ZGoogle Scholar

    [14]

    Wen J, Wang W J, Chen X R, Li N, Chen X S, Lu W 2018 J. Appl. Phys. 123 161530Google Scholar

    [15]

    郑文龙, 张亚光, 顾溢, 李宝宝, 陈泽中, 陈平平 2019 红外与毫米波学报 38 1001

    Zheng W L, Zhang Y G, Gu Y, Li B B, Chen Z Z, Chen P P 2019 J. Infrared Millim. Waves 38 1001

    [16]

    Zha F X, Hong F, Pan B C, Wang Y, Shao J, Shen X C 2018 Phys. Rev. B 97 035401Google Scholar

    [17]

    Mikkelsen A, Lundgren E 2005 Prog. Surf. Sci. 80 1Google Scholar

    [18]

    Feenstra R M 1994 Phys. Rev. B 50 4561Google Scholar

    [19]

    Albrektsen O, Arent D J, Meier H P, Salemink H W M, 1990 Appl. Phys. Lett. 57 31Google Scholar

    [20]

    Newman N, Spicer W E, Kendelewicz T, Lindau I 1986 J. Vac. Sci. Technol. B 4 931Google Scholar

    [21]

    邓宗武, 郭伟民, 刘焕明, 曹立礼 1999 物理化学学报 15 303Google Scholar

    Deng Z W, Kwok Raymund W M, Lau Leo W M, Cao L L 1999 Acta Phys-Chim. Sin. 15 303Google Scholar

    [22]

    Kingston R H, Neustadter S F 1955 J. Appl. Phys 26 718Google Scholar

    [23]

    Seiwatz R, Green M 1958 J. Appl. Phys 29 1034Google Scholar

    [24]

    Jäger N D, Weber E R, Urban K, Ebert P H 2003 Phys. Rev. B 67 165327Google Scholar

    [25]

    Ivanova L, Borisova S, Eisele H, Dähne M, Laubsch A, Ebert P H 2008 Appl. Phys. Lett. 93 192110Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [3] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [4] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [5] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [6] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [7] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [8] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [9] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [10] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [11] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [12] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [13] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [14] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [15] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [16] 颜永美, 孙宜阳, 丁小勇, 陈议明. 半导体表面气体分子吸附机理的光伏研究. 物理学报, 2000, 49(12): 2448-2454. doi: 10.7498/aps.49.2448
    [17] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [18] 于洪滨, 高波, 盖峥, 杨威生. 电场下用扫描隧道显微镜对针尖原子扩散的观察. 物理学报, 1997, 46(4): 679-687. doi: 10.7498/aps.46.679
    [19] 于洪滨, 高波, 盖峥, 杨威生. 用扫描隧道显微镜针尖操纵金岛. 物理学报, 1997, 46(3): 505-510. doi: 10.7498/aps.46.505
    [20] 方晔, 魏莹, 钟发平, 白春礼, 唐有祺. 扫描隧道显微镜研究银胶的表面结构和凝聚行为. 物理学报, 1995, 44(4): 599-605. doi: 10.7498/aps.44.599
计量
  • 文章访问数:  6980
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-05-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回