搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo掺杂二维VS2吸附有毒气体的理论研究

王雪冰 唐春梅 谢梓涵 俞瑞 严杰 蒋承乐

引用本文:
Citation:

Mo掺杂二维VS2吸附有毒气体的理论研究

王雪冰, 唐春梅, 谢梓涵, 俞瑞, 严杰, 蒋承乐

Theoretical research of toxic gases adsorbed by Mo-doped two-dimensional VS2 structure

Wang Xue-Bing, Tang Chun-Mei, Xie Zi-Han, Yu Rui, Yan Jie, Jiang Cheng-Le
PDF
HTML
导出引用
  • NO2、NH3、芥子气和沙林是具有代表性的化学毒剂, 它们扩散快毒性强, 因此实现学术界和工业界对它们的快速检测极为重要. 本文使用密度泛函理论研究发现过渡金属Mo原子可以稳定掺杂在二维VS2结构中的S空位上, 且掺杂结构与NO2、NH3、沙林和芥子气之间具有较强的相互作用, 进一步影响VS2对NO2、NH3、沙林和芥子气的气敏性. 本文通过吸附能、吸附距离、Mulliken电荷, 差分电荷密度, 能带图与态密度分析等进一步揭示了影响机理, 并依据电导率、能带等计算结果对4种气体进行区分. 因此Mo原子掺杂的VS2结构可以有效吸附有毒气体, 该研究可以为实验研究者提供充足的理论依据.
    As is well known, the leakage of four toxic gases, NO2, NH3, mustard gas and sarin greatly threaten the environment and human health. Among of them, mustard gas and sarin are two serious chemical and biological weapons agents, and exposure to a small amount can cause skin burns and immediate death. NO2 and NH3 are two common toxic pollutants produced by automobile exhaust, coal combustion and petrochemical industry. The presence of trace amounts of NO2 and NH3 gas in human tissues can cause serious respiratory diseases and damage human brain and other systems. Thus, it is very important to realize the rapid detection of NO2, NH3, mustard gas and sarin in academia and industry. In this study, we use density functional theory to investigate the ability of a transition metal Mo doped two-dimensional VS2 structure to detect the four representative toxic gases. The results reveal that Mo atom doping has a significant effect on the stability and gas-sensitivity of the VS2 structure. The Mo atom can be successfully doped on the S-vacancy in the two-dimensional VS2 structure. Compared with the undoped structure VS2, the doped structure Mo-VS2 has strong interaction with NO2, NH3, sarin, and mustard gas, realizing effective adsorption of them. The presence of Mo atom in the VS2 lattice changes the electronic structure of VS2, also modifies its band gap and density of states. The interaction between the Mo-VS2 structure and the target analytes depends strongly on the nature of the gas molecule. The binding energy values for NO2, NH3, mustard gas, and sarin on the Mo-VS2 are significantly higher than those on the pristine VS2, indicating stronger interaction between the Mo-VS2 structure and these gases. Our calculations show that the Mo atom in VS2 changes its electrical resistance after being exposed to the gases, which can be used to distinguish different gases. Moreover, differences in charge redistribution within the Mo-VS2 structure upon being exposed to different gases can be used to explain their differential gas-sensitivity. Our results can provide sufficient theoretical basis for experimental researchers to design and optimize the performances of sensors in practical applications.
      通信作者: 唐春梅, tcmnj@163.com
    • 基金项目: 南京大学国家微结构重点实验室开放课题(批准号: M35036)和河海大学海岸灾害及防护教育部重点实验室(批准号: 202214)资助的课题.
      Corresponding author: Tang Chun-Mei, tcmnj@163.com
    • Funds: Project supported by the National Key Laboratory of Microstructure, Nanjing University, China (Grant No. M35036) and the Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education of China (Grant No. 202214).
    [1]

    Guthrie F 1860 Justus Liebigs Annalen der Chemie. 113 266Google Scholar

    [2]

    Niemann A 1860 Justus Liebigs Annalen der Chemie. 113 288Google Scholar

    [3]

    Meyer V 1886 Berichte der Deutschen Chemischen Gesellschaft 19 3259Google Scholar

    [4]

    Sadeghi M 2015 Basic and Clinical Toxicology of Mustard Compounds (New York: Springer International Publishing) pp1–27

    [5]

    Qin Y, Zhang Z 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113737Google Scholar

    [6]

    Jia X, Zhang H, Zhang Z, An L 2019 Superlattice Microst. 134 106235Google Scholar

    [7]

    Lundberg J O, Weitzberg E, Gladwin M T 2008 Nat. Rev. Drug Discov. 7 156Google Scholar

    [8]

    Basharnavaz H, Habibi-Yangjeh A, Kamali S H 2019 Mater. Chem. Phys. 231 264Google Scholar

    [9]

    刘卫卫, 余建华, 潘勇 2005 化学传感器 4 52Google Scholar

    Liu W W, Yu J H, Pan Y 2005 Chem. Sensors 4 52Google Scholar

    [10]

    Hill C L 1995 Coord. Chem. Rev. 143 407Google Scholar

    [11]

    Müller A, Peters F, Pope M T 1998 Chem. Rev. 98 239Google Scholar

    [12]

    Long D L, Burkholder E, Cronin L 2007 Chem. Soc. Rev. 36 105Google Scholar

    [13]

    徐望胜 2021 博士学位论文(合肥: 中国科学技术大学)

    Xu W S 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [14]

    Ali M, Tit N 2019 Surf. Sci. 684 28Google Scholar

    [15]

    Zhao Z, Yong Y, Hu S, Li C, Kuang Y 2019 AIP Adv. 9 125308Google Scholar

    [16]

    梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞 2021 物理学报 70 080701Google Scholar

    Liang T, Wang Y Y, Liu G H, Fu W Y, Wang H Z, Chen J F 2021 Acta Phys. Sin. 70 080701Google Scholar

    [17]

    Fabian A 2018 arXiv. 1803.07999 [cond-mat. mtrl-sci

    [18]

    Delley B 2000 J. Chem. Phys. 113 7756e64Google Scholar

    [19]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244e9Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865e8Google Scholar

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 Phys. Chem. C 111 17977e80Google Scholar

    [22]

    Delly B J 1990 Chem. Phys. 92 508e17Google Scholar

    [23]

    Liu Z C, Gui Y G, Xu L N, Chen X P 2022 Surf. Interfaces 30 101883Google Scholar

    [24]

    Shi Z Y, Zhang J Q, Zeng W, Zhou Q 2023 Langmuir 39 4125Google Scholar

    [25]

    Eric B I, Chris A M 2016 Phys. Rev. B 94 035120Google Scholar

    [26]

    Zhang B O, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [27]

    Xiong H H, Zhang H H, Gan L 2020 J. Phys. E 126 114463Google Scholar

    [28]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [29]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

    [30]

    Chen L, Xiong Z, Cui Y, Luo H, Gao Y 2021 Appl. Surf. Sci. 542 148767Google Scholar

  • 图 1  (a) VS2(001)表面; (b)掺杂结构Mo-VS2; (c) Mo-VS2结构的差分电荷密度图

    Fig. 1.  (a) Structure of VS2(001); (b) doping structure of Mo-VS2; (c) differential charge density map of Mo-VS2.

    图 2  (a) VS2的能带图; (b) Mo-VS2的能带图

    Fig. 2.  (a) Energy band diagram of VS2; (b) energy band diagram of Mo-VS2.

    图 3  (a) NH3和NO2分子位于Mo原子上方与表面平行; (b) NH3和NO2分子位于六元环中心位上方与表面平行; (c) NH3和NO2分子位于六元环中心位上方与表面垂直; (d) NH3和NO2分子位于Mo原子上方与表面垂直

    Fig. 3.  (a) NH3 and NO2 molecules are located above the Mo atom and parallel to the surface; (b) NH3 and NO2 molecules are located above the center of the six-membered ring and parallel to the surface; (c) NH3 and NO2 molecules are located above the center of the six-membered ring and perpendicular to the surface; (d) NH3 and NO2 molecules are located above the Mo atom and perpendicular to the surface.

    图 4  (a), (c) S原子位于Mo原子的上方; (b), (d) C原子位于Mo原子的上方; (a), (b) HD分子沿表面短轴; (c), (d) HD分子沿表面长轴; (e)对结构(c)沿长轴旋转90o; (f) 对结构(c)沿长轴旋转180o; (g) 对结构(c)长轴旋转270o; (h) HD分子长轴垂直于表面

    Fig. 4.  (a), (c) S atom is above the Mo atom; (b), (d) C atom is above the Mo atom; (a), (b) HD molecules along the short axis of the surface; (c), (d) HD molecules along the long axis of the surface; (e) rotate structure (c) by 90o along its major axis; (f) rotate structure (c) by 180o along its major axis; (g) rotate structure (c) by 270o along its major axis; (h) the major axis of the HD molecule is perpendicular to the surface.

    图 5  (a) C原子在Mo原子的上方; (b) F原子在Mo原子的上方; (c) H原子在Mo原子的上方; (d) 与P, C成键的O原子在Mo原子的上方; (e) 对结构4旋转90o; (f) 对结构4旋转180o; (g) 对结构4旋转270o; (h) sarin分子“长边”垂直于表面

    Fig. 5.  (a) C atom is above the Mo atom; (b) F atom is above Mo atom; (c) H atom is above Mo atom; (d) O atom bonded with P and C is above the Mo atom; (e) rotate structure 4 by 90o; (f) rotate structure 4 by 180o; (g) rotate structure 4 by 270o; (h) the “long side” of the sarin molecule is perpendicular to the surface.

    图 6  4种气体在Mo掺杂前后的表面吸附构型 (a) NH3@VS2; (b) NO2@VS2; (c) HD@VS2; (d) sarin@VS2; (e) NH3@Mo-VS2; (f) NO2@Mo-VS2; (g) HD@Mo-VS2; (h) sarin@Mo-VS2.

    Fig. 6.  Adsorption configurations of four kinds of gas before and after Mo doping: (a) NH3@VS2; (b) NO2@VS2; (c) HD@VS2; (d) sarin@VS2; (e) NH3@Mo-VS2; (f) NO2@Mo-VS2; (g) HD@Mo-VS2; (h) sarin@Mo-VS2

    图 7  差分电荷密度图 (a) NH3@Mo-VS2; (b) NO2@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2

    Fig. 7.  Differential charge density map: (a) NH3@Mo-VS2; (b) NO2@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2.

    图 8  各体系的能带图 (a) NO2@Mo-VS2; (b) NH3@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2

    Fig. 8.  Energy band diagram of different system: (a) NO2@Mo-VS2; (b) NH3@Mo-VS2; (c) HD@Mo-VS2; (d) sarin@Mo-VS2.

    图 9  Mo-VS2与NH3, NO2, HD, sarin吸附构型的态密度图

    Fig. 9.  DOS diagram of Mo-VS2 adsorption configuration with NH3, NO2, HD and sarin.

    表 1  4种分子吸附在不同位置时与最低稳定结构之间的能量差ΔE

    Table 1.  Energy difference between the four molecules adsorbed at different positions and the lowest stable structure (ΔE).

    StructureSiteΔE/eVStructureSiteΔE/eVStructureSiteΔE/eV
    NH3a0.000HD10.858Sarin11.021
    b0.34820.85921.285
    c0.36930.00030.974
    d0.01240.89240.000
    NO2a0.000a0.902a3.163
    b0.455b0.557b1.217
    c0.354c1.552c0.128
    d0.011d1.461d3.843
    下载: 导出CSV

    表 2  4种有毒气体在单层VS2结构和Mo原子掺杂结构表面的Ead, 吸附分子的Mulliken电荷(Qmolecule)和Mo原子的Mulliken电荷(QMo)和恢复时间($ \tau $)

    Table 2.  Four toxic gases in monolayer VS2 structure and Mo atom doped structure surface Ead, adsorbed molecule Mulliken charge (Qmolecule) and Mo atom Mulliken charge (QMo) and recovery time ($ \tau $).

    structure Ead/eV Qmolecule/$ e $ $ \tau /{\mathrm{s}} $ QMo/$ e $
    NH3@Mo-VS2 2.59 0.207 7.01×1030 0.16
    NH3@VS2 0.18 0.035 1.19×10–10
    NO2@Mo-VS2 2.86 –0.342 3.03×1035 0.139
    NO2@VS2 –0.06 –0.101 9.14×10–15
    HD@Mo-VS2 2.19 0.302 1.15×1024 –0.004
    HD@VS2 0.65 0.084 8.36×10–4
    sarlin@Mo-VS2 1.95 0.205 1.06×1020 0.292
    sarlin@VS2 0.50 –0.015 3.73×10–5
    下载: 导出CSV
  • [1]

    Guthrie F 1860 Justus Liebigs Annalen der Chemie. 113 266Google Scholar

    [2]

    Niemann A 1860 Justus Liebigs Annalen der Chemie. 113 288Google Scholar

    [3]

    Meyer V 1886 Berichte der Deutschen Chemischen Gesellschaft 19 3259Google Scholar

    [4]

    Sadeghi M 2015 Basic and Clinical Toxicology of Mustard Compounds (New York: Springer International Publishing) pp1–27

    [5]

    Qin Y, Zhang Z 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113737Google Scholar

    [6]

    Jia X, Zhang H, Zhang Z, An L 2019 Superlattice Microst. 134 106235Google Scholar

    [7]

    Lundberg J O, Weitzberg E, Gladwin M T 2008 Nat. Rev. Drug Discov. 7 156Google Scholar

    [8]

    Basharnavaz H, Habibi-Yangjeh A, Kamali S H 2019 Mater. Chem. Phys. 231 264Google Scholar

    [9]

    刘卫卫, 余建华, 潘勇 2005 化学传感器 4 52Google Scholar

    Liu W W, Yu J H, Pan Y 2005 Chem. Sensors 4 52Google Scholar

    [10]

    Hill C L 1995 Coord. Chem. Rev. 143 407Google Scholar

    [11]

    Müller A, Peters F, Pope M T 1998 Chem. Rev. 98 239Google Scholar

    [12]

    Long D L, Burkholder E, Cronin L 2007 Chem. Soc. Rev. 36 105Google Scholar

    [13]

    徐望胜 2021 博士学位论文(合肥: 中国科学技术大学)

    Xu W S 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [14]

    Ali M, Tit N 2019 Surf. Sci. 684 28Google Scholar

    [15]

    Zhao Z, Yong Y, Hu S, Li C, Kuang Y 2019 AIP Adv. 9 125308Google Scholar

    [16]

    梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞 2021 物理学报 70 080701Google Scholar

    Liang T, Wang Y Y, Liu G H, Fu W Y, Wang H Z, Chen J F 2021 Acta Phys. Sin. 70 080701Google Scholar

    [17]

    Fabian A 2018 arXiv. 1803.07999 [cond-mat. mtrl-sci

    [18]

    Delley B 2000 J. Chem. Phys. 113 7756e64Google Scholar

    [19]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244e9Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865e8Google Scholar

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 Phys. Chem. C 111 17977e80Google Scholar

    [22]

    Delly B J 1990 Chem. Phys. 92 508e17Google Scholar

    [23]

    Liu Z C, Gui Y G, Xu L N, Chen X P 2022 Surf. Interfaces 30 101883Google Scholar

    [24]

    Shi Z Y, Zhang J Q, Zeng W, Zhou Q 2023 Langmuir 39 4125Google Scholar

    [25]

    Eric B I, Chris A M 2016 Phys. Rev. B 94 035120Google Scholar

    [26]

    Zhang B O, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [27]

    Xiong H H, Zhang H H, Gan L 2020 J. Phys. E 126 114463Google Scholar

    [28]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [29]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

    [30]

    Chen L, Xiong Z, Cui Y, Luo H, Gao Y 2021 Appl. Surf. Sci. 542 148767Google Scholar

  • [1] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [2] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [3] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [5] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究. 物理学报, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [6] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [7] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [10] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [11] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究. 物理学报, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [12] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [13] 张岩, 陈雪风, 齐凯天, 李兵, 杨传路, 盛勇. (SiO2)n-(n≤7)团簇的密度泛函研究. 物理学报, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [14] 张睿智, 王春雷, 李吉超, 梅良模. SrTiO3中形成级联能级的理论分析. 物理学报, 2009, 58(10): 7162-7167. doi: 10.7498/aps.58.7162
    [15] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [16] 杜丽萍, 陈抱雪, 孙 蓓, 陈 直, 邹林儿, 浜中广见, 矶 守. 掺杂As2S8非晶态薄膜波导的光阻断效应. 物理学报, 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [18] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究. 物理学报, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [19] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [20] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
计量
  • 文章访问数:  2609
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-08-27
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回