搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究

周传仓 刘发民 丁芃 钟文武 蔡鲁刚 曾乐贵

引用本文:
Citation:

钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究

周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵

Molten salt synthesis, V-doped and magnetic properties of columbite MnNb2O6

Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui
PDF
导出引用
  • 采用了熔盐法新工艺制备了纯相与掺钒的MnNb2O6粉晶,利用X射线衍射仪(XRD),扫描电子显微镜(SEM),能谱分析(EDX),透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)和电子衍射(SAED)分析了其物相、形貌及微结构.结果表明合成产物为正交晶系钶铁矿型MnNb2O6;在不同的熔盐中合成出了棒状、片状与长方体形貌的纯相产物.讨论了温度与掺杂对结构与形貌的影响,HRTEM与SAED分析表明了产物的各向异性生
    A novel molten salt synthsis technology is developed to prepare single phase and V-doped MnNb2O6powder. The prepared samples are characterized by XRD, SEM, EDS, TEM, HRTEM and SAED. The results show that the MnNb2O6 powder has an orthorhombic structure.and the samples prepared in different molten salts exhibit different shapes:flake shape, rod shape, and rectangular shape. The effects of temperature and doped on structure and morphology are discussed. HRTEM and SAED indicate the rod-shape MnNb2O6 has the properties of anisotropic growth and crystalline integrality. Magnetic properties are measured by superconducting quantum interference device (SQUID) in a temperature range of 2—30 K under a magnetic field of 2T. The magnetic measurement results indicate that MnNb1.8V0.2O6 undergoes an antiferromagnetic transition with a Néel temperature of 5.4 K. Above 20 K, the inverse susceptibility is fitted well to the Curie-Weiss law θ=-33.9 K,C=10.52 K emu mol ·f.u.-1 and effective moment 5.82 μ B can be obtained. With V-doped amount increases, antiferromagnetic interaction increases. According to the Anderson model, the MnNb2-xVxO6 is antiferromagnet in a low temperature range, which is induced by the superexchange interaction of Mn2+-O2--Mn2+.
    [1]

    Pullar R C J 2009 Am. Ceram. Soc. 92 563

    [2]

    Pullar R C, Breeze J D, Alford N M 2005 J. Am. Ceram. Soc. 88 2466

    [3]

    Pullar R C, Okeneme K, Alford N M 2003 J. Eur. Ceram. Soc. 23 2479

    [4]

    Li G, Peraldo Bicelli L, Razzini G 1991 Solar Energy Mater. 21 335

    [5]

    Yea J, Zou Z, Matsushita A 2003 Int. J. Hydrogen Energy 28 651

    [6]

    Takita Y, Kikutani K, Xia C 2005 Appl. Catal. A: General 283 209

    [7]

    Nielsen O V, Lebechx B, Larsens F K 1976 J. Phys. C: Solid State Phys. 9 2401

    [8]

    Nielsen O V, Johansson T, Holmes L M 1976 J. Magn. Magn. Mater. 1 320

    [9]

    Orera A, García-Alvarado F, Irvine J T S 2007 Chem. Mater.19 2310

    [10]

    Flaviano G A, Orera A, Jesús C V 2006 Chem. Mater. 18 3827

    [11]

    Cristina T, Maria C M,Lorenzo M 2004 Chem. Phys. 6 4056

    [12]

    Wachtel A 1964 J. Electrochem. Soc. 111 534

    [13]

    Soumonni O 2004 MS Thesis (Atlanta:Georgia Institute of Technology)

    [14]

    Cho I S, Kim DW, Noh TH 2010 J. Nanosci. Nanotechnol. 10 1196

    [15]

    Cho I S, Bae S T ,Yim D K 2009 J. Am. Ceram. Soc. 92 506

    [16]

    An H Z, Wang C, Wang T M 2007 J. Inorg. Mater. 22 922

    [17]

    Kim N K 1997 Mater.Lett. 32 127

    [18]

    Ananta S, Brydson R, Thomas N W 1999 Eur.Ceram.Soc.19 355

    [19]

    Ananta S 2004 Mater.Lett. 58 2781

    [20]

    Belous A G, Ovchar O V, Jancar B 2007 J.Eur.Ceram.Soc. 27 2933

    [21]

    Belous A G, Ovchar,O V, Kramarenko A V 2006 Inorg.Mater. 42 1369

    [22]

    Shi L H, Yan W B 2009 Acta Phys. Sin.58 4987(in Chinese)[师丽红、阎文博 2009 物理学报 58 4987]

    [23]

    Gao C Y, Xia H R, Xu J Q, Si S C, Zhang H J, Wang J Y, Song H L 2007 Acta Phys. Sin.56 4648 (in Chinese)[高成勇、夏海瑞、徐建强、司书春、张怀金、王继杨、宋化龙 2007 物理学报 56 4648]

    [24]

    Zhang L, Georg G, Igor D 2008 Chem. Asian J. 3 746

    [25]

    AlexAnder B, FrAncois H, RoBert L 2010 Am. Mineral. 95 537

    [26]

    Yao L Z 1995 The basis of crystal growth(Hefei: China university of science and technology press) p55 (in Chinese) [姚连增 1995 晶体生长基础(合肥: 中国科技大学出版社) 第55页]

    [27]

    Zhang K C,Zhang L S 1997 Crystal growth science and technology (Vol.1, Second Edition) (Beijing: Science press) p399 (in Chinese) [张克从、张乐穗 1997 晶体生长科学与技术上册(第二版)(北京: 科学出版社) 第339页]

    [28]

    Duan S Z 1990 Molten salt Chemistry:Principle and application (Beijing: Metallurgy industry press)p413 (in Chinese) [段淑贞 1990 熔盐化学: 原理和应用(北京: 冶金工业出版社)第413页]

    [29]

    Xie G 1998 Theory and application of molten salts (Beijing: Metallurgy industry Press) p101(in Chinese)[谢 刚 1998 熔融盐理论与应用(北京: 冶金工业出版社)第101页]

    [30]

    Zhou C C, Liu F M, Ding P 2009 Chin.Phys.B 18 5055

    [31]

    Guo L, Dai J, Tian J, He T 2008 Ceram.Int. 34 1783

    [32]

    Jiang S T, Li W 2003 Condensed matter physics of magnetic(Beijing: Science press) p355 (in Chinese) [姜寿亭、李 卫 2003 凝聚态磁性物理(北京:科学出版社)第355页]

    [33]

    Jiang X F, Liu X F, Liu Y J, Zhang Y 2010 Acta Phys. Sin. 59 3432 (in Chinese)[张 瑜、 刘拥军、 刘先锋、 江学范 2010 物理学报 59 3432]

    [34]

    Liu D Y, Chen D M , Zou L J 2009 Chin.Phys.B 18 4497

    [35]

    Zhou C C, Liu F M, Ding P, Cai L G, Zhong W W, Zhang H 2010 Chin.Phys.B 19 067503

    [36]

    Li P F, Chen Z H 2010 Chin.Phys. B 19 027503

    [37]

    Qu Z, Pi L, Fan J Y, Tan S, Zhang B, Zhang M, Zhang Y H 2007 Chin.Phys.B 16 258

    [38]

    Jiang K 2010 Chin.Phys.B 59 2801

  • [1]

    Pullar R C J 2009 Am. Ceram. Soc. 92 563

    [2]

    Pullar R C, Breeze J D, Alford N M 2005 J. Am. Ceram. Soc. 88 2466

    [3]

    Pullar R C, Okeneme K, Alford N M 2003 J. Eur. Ceram. Soc. 23 2479

    [4]

    Li G, Peraldo Bicelli L, Razzini G 1991 Solar Energy Mater. 21 335

    [5]

    Yea J, Zou Z, Matsushita A 2003 Int. J. Hydrogen Energy 28 651

    [6]

    Takita Y, Kikutani K, Xia C 2005 Appl. Catal. A: General 283 209

    [7]

    Nielsen O V, Lebechx B, Larsens F K 1976 J. Phys. C: Solid State Phys. 9 2401

    [8]

    Nielsen O V, Johansson T, Holmes L M 1976 J. Magn. Magn. Mater. 1 320

    [9]

    Orera A, García-Alvarado F, Irvine J T S 2007 Chem. Mater.19 2310

    [10]

    Flaviano G A, Orera A, Jesús C V 2006 Chem. Mater. 18 3827

    [11]

    Cristina T, Maria C M,Lorenzo M 2004 Chem. Phys. 6 4056

    [12]

    Wachtel A 1964 J. Electrochem. Soc. 111 534

    [13]

    Soumonni O 2004 MS Thesis (Atlanta:Georgia Institute of Technology)

    [14]

    Cho I S, Kim DW, Noh TH 2010 J. Nanosci. Nanotechnol. 10 1196

    [15]

    Cho I S, Bae S T ,Yim D K 2009 J. Am. Ceram. Soc. 92 506

    [16]

    An H Z, Wang C, Wang T M 2007 J. Inorg. Mater. 22 922

    [17]

    Kim N K 1997 Mater.Lett. 32 127

    [18]

    Ananta S, Brydson R, Thomas N W 1999 Eur.Ceram.Soc.19 355

    [19]

    Ananta S 2004 Mater.Lett. 58 2781

    [20]

    Belous A G, Ovchar O V, Jancar B 2007 J.Eur.Ceram.Soc. 27 2933

    [21]

    Belous A G, Ovchar,O V, Kramarenko A V 2006 Inorg.Mater. 42 1369

    [22]

    Shi L H, Yan W B 2009 Acta Phys. Sin.58 4987(in Chinese)[师丽红、阎文博 2009 物理学报 58 4987]

    [23]

    Gao C Y, Xia H R, Xu J Q, Si S C, Zhang H J, Wang J Y, Song H L 2007 Acta Phys. Sin.56 4648 (in Chinese)[高成勇、夏海瑞、徐建强、司书春、张怀金、王继杨、宋化龙 2007 物理学报 56 4648]

    [24]

    Zhang L, Georg G, Igor D 2008 Chem. Asian J. 3 746

    [25]

    AlexAnder B, FrAncois H, RoBert L 2010 Am. Mineral. 95 537

    [26]

    Yao L Z 1995 The basis of crystal growth(Hefei: China university of science and technology press) p55 (in Chinese) [姚连增 1995 晶体生长基础(合肥: 中国科技大学出版社) 第55页]

    [27]

    Zhang K C,Zhang L S 1997 Crystal growth science and technology (Vol.1, Second Edition) (Beijing: Science press) p399 (in Chinese) [张克从、张乐穗 1997 晶体生长科学与技术上册(第二版)(北京: 科学出版社) 第339页]

    [28]

    Duan S Z 1990 Molten salt Chemistry:Principle and application (Beijing: Metallurgy industry press)p413 (in Chinese) [段淑贞 1990 熔盐化学: 原理和应用(北京: 冶金工业出版社)第413页]

    [29]

    Xie G 1998 Theory and application of molten salts (Beijing: Metallurgy industry Press) p101(in Chinese)[谢 刚 1998 熔融盐理论与应用(北京: 冶金工业出版社)第101页]

    [30]

    Zhou C C, Liu F M, Ding P 2009 Chin.Phys.B 18 5055

    [31]

    Guo L, Dai J, Tian J, He T 2008 Ceram.Int. 34 1783

    [32]

    Jiang S T, Li W 2003 Condensed matter physics of magnetic(Beijing: Science press) p355 (in Chinese) [姜寿亭、李 卫 2003 凝聚态磁性物理(北京:科学出版社)第355页]

    [33]

    Jiang X F, Liu X F, Liu Y J, Zhang Y 2010 Acta Phys. Sin. 59 3432 (in Chinese)[张 瑜、 刘拥军、 刘先锋、 江学范 2010 物理学报 59 3432]

    [34]

    Liu D Y, Chen D M , Zou L J 2009 Chin.Phys.B 18 4497

    [35]

    Zhou C C, Liu F M, Ding P, Cai L G, Zhong W W, Zhang H 2010 Chin.Phys.B 19 067503

    [36]

    Li P F, Chen Z H 2010 Chin.Phys. B 19 027503

    [37]

    Qu Z, Pi L, Fan J Y, Tan S, Zhang B, Zhang M, Zhang Y H 2007 Chin.Phys.B 16 258

    [38]

    Jiang K 2010 Chin.Phys.B 59 2801

  • [1] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [2] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响. 物理学报, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [3] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [4] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [5] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [6] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [7] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [8] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性. 物理学报, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [9] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [10] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [11] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [12] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [14] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [15] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [16] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [17] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [18] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [19] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [20] 夏洪旭, 闫 骏, 余江应, 张世远. 类钙钛矿化合物Ca(Mn2Cu1)Mn4O12的磁性与磁电阻效应. 物理学报, 2004, 53(7): 2342-2346. doi: 10.7498/aps.53.2342
计量
  • 文章访问数:  6602
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-03
  • 修回日期:  2010-07-28
  • 刊出日期:  2011-02-05

钶铁矿型MnNb2O6的熔盐法合成、钒掺杂与磁性研究

  • 1. 北京航空航天大学物理科学与核能工程学院,教育部微纳测控与物理重点实验室,北京 100191

摘要: 采用了熔盐法新工艺制备了纯相与掺钒的MnNb2O6粉晶,利用X射线衍射仪(XRD),扫描电子显微镜(SEM),能谱分析(EDX),透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)和电子衍射(SAED)分析了其物相、形貌及微结构.结果表明合成产物为正交晶系钶铁矿型MnNb2O6;在不同的熔盐中合成出了棒状、片状与长方体形貌的纯相产物.讨论了温度与掺杂对结构与形貌的影响,HRTEM与SAED分析表明了产物的各向异性生

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回